mkldnn_reuse.h 12.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32

namespace paddle {
namespace platform {

33
using memory = dnnl::memory;
J
Jacek Czaja 已提交
34

35
static void AppendActivation(const framework::ExecutionContext& ctx,
36
                             dnnl::post_ops& post_ops,  // NOLINT
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static void SetOutMemDescWithUnsqueeze2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  const std::vector<int>& fused_unsqueeze2_axes =
      ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
  const std::vector<int64_t>& op_tz = out_md.dims();
  std::vector<int64_t> unsqueezed_op_tz(
      op_tz.size() + fused_unsqueeze2_axes.size(), 0);

  for (const auto& axis : fused_unsqueeze2_axes) {
    int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
    unsqueezed_op_tz[positive_axis] = 1;
  }

  int j = 0;
  for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
    if (unsqueezed_op_tz[i] == 0) {
      unsqueezed_op_tz[i] = op_tz[j++];
    }
  }
  out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
  out->Resize(phi::make_ddim(unsqueezed_op_tz));
}

static void SetOutMemDescWithReshape2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  std::vector<int64_t> fused_reshape2_shape(
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

  const int out_shape_numel = out->numel();
  const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                              fused_reshape2_shape.end(),
                                              1,
                                              std::multiplies<int64_t>());

  for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
    if (fused_reshape2_shape[i] == -1) {
      fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
      break;
    }
  }

  out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
  out->Resize(phi::make_ddim(fused_reshape2_shape));
}

static void SetOutMemDescWithLogicalLayoutFusesSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  if (ctx.HasAttr("fused_unsqueeze2_axes")) {
    SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
  } else if (ctx.HasAttr("fused_reshape2_shape")) {
    SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
146 147 148
  } else if (ctx.HasAttr("fused_squeeze2_axes")) {
    out->set_mem_desc(out_md);
    out->Resize(phi::make_ddim(out_md.dims()));
149 150 151 152 153
  } else {
    out->set_mem_desc(out_md);
  }
}

154
template <typename XT, typename YT, typename OT>
155
class MatMulV2MKLDNNHandler
156
    : public phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul> {
157
 public:
158 159
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
160
                        paddle::platform::Place cpu_place,
161 162 163 164
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
165 166 167
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
168 169
      : phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                              cpu_place) {
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

229
    // TODO(jczaja): Why not for int8??
230
    if (!phi::funcs::is_int8<OT>() && is_output_fused) {
231 232 233
      out_strides = FakeTransposeStrides(out_ddims);
    }

234 235 236 237 238 239
    auto x_md =
        memory::desc(x_dims, phi::funcs::OneDNNGetDataType<XT>(), x_strides);
    auto y_md =
        memory::desc(y_dims, phi::funcs::OneDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(
        out_ddims, phi::funcs::OneDNNGetDataType<OT>(), out_strides);
240

241 242 243 244 245
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

261 262 263 264 265
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

266 267 268
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
269 270
    }

271
    if (ctx.HasInput("ResidualData")) {
272
      auto* residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
273 274
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
275
                                           phi::funcs::OneDNNGetDataType<OT>(),
276
                                           dnnl::memory::format_tag::any);
277 278
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
279 280 281 282
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
283 284
    }

285 286
    AppendActivation(ctx, post_operations);

287 288 289 290 291 292
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

293 294
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

315
  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor* input) {
316
    const YT* input_data = input->data<YT>();
317 318 319
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->weights_desc(),
        phi::funcs::to_void_cast<YT>(input_data));
320 321
  }

322
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output) {
323 324 325
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
326 327 328 329
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
330 331
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
332 333 334
  }
};

J
Jacek Czaja 已提交
335 336
}  // namespace platform
}  // namespace paddle