partial_program.py 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28 29 30 31 32 33 34
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
35
from .utils import _out_grad_names, _param_grad_names
36

37 38
__all__ = []

39

40
class NestSequence:
41 42 43 44 45 46 47
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
48
        self.__input_list = self.tolist()
49 50 51 52 53 54 55 56 57 58 59 60 61
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
62
        assert len(self.__input_list) == len(value_list)
63 64 65 66
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
67
        for idx, var in enumerate(self.__input_list):
68
            if isinstance(
69 70
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
71 72 73 74 75 76 77 78 79 80
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
81
            for var in self.__input_list:
82
                if not isinstance(
83 84
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
85 86
                    warning_types.add(type(var))
            if warning_types:
87
                logging_utils.warn(
88 89
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
90 91 92 93
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
94 95 96 97 98 99

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
100
        return self.__input_list[item]
101

102

103
class LazyInitialized:
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

    def __init__(self, mode='infer'):
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
        assert mode in ['train', 'infer']
        self.mode = mode


141
class PartialProgramLayer:
142
    """
H
hjyp 已提交
143
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
144 145 146
    and execute them as a static subgraph.

    .. note::
147 148 149
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
150 151 152 153
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
154 155
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
156 157 158
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
159
        Layer: A Layer object that run all ops internally in static graph mode.
160 161
    """

162 163 164
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
165
        super().__init__()
166 167
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
168
        self._params = parameters if parameters is not None else []
169

170 171 172
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

173
        self._origin_main_program = self._verify_program(main_program)
174 175 176
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
177
        # Set default mode to train
178
        self.training = True
179
        self._infer_info = ProgramInfo(mode='infer')
180

181 182 183 184
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
185
        # For AMP training
186
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
187
            custom_white_list=custom_white_list,
188 189
            custom_black_list=custom_black_list,
        )
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

210 211 212 213
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

214 215 216 217 218 219 220
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
221 222
                self._origin_main_program
            )
223 224 225
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
226

227 228 229 230
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
231 232 233
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
234 235 236 237 238 239
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
240

241 242 243
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
244 245
            for_test=is_infer_mode
        )
246
        with program_guard(pure_fp16_program):
247
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
248 249
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
250 251 252 253
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
254 255
                pure_fp16_program
            )
256 257
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
258

259
    @switch_to_static_graph
260
    def _create_forward_backward_train_program(self):
261
        whole_program = self._train_program
262 263
        forward_end_op_index = self._infer_info.op_size['fp32']
        assert forward_end_op_index >= 0
264 265 266
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
267

268 269
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
270
        whole_program = self._train_amp_program
271 272
        forward_end_op_index = self._infer_info.op_size['amp']
        assert forward_end_op_index >= 0
273 274 275
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
276 277 278

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
279
        whole_program = self._train_pure_fp16_program
280 281
        forward_end_op_index = self._infer_info.op_size['fp16']
        assert forward_end_op_index >= 0
282 283 284
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
285 286

    @LazyInitialized
287 288
    def _train_program(self):
        return self._create_program()
289

290
    @LazyInitialized
291
    def _infer_program(self):
292 293 294 295 296
        program = self._create_program(is_infer_mode=True)
        self._infer_info.op_size['fp32'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp32']
        )
297

298 299 300 301 302 303
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
304 305 306 307 308
        program = self._create_amp_program(is_infer_mode=True)
        self._infer_info.op_size['amp'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['amp']
        )
309 310 311

    @LazyInitialized
    def _train_pure_fp16_program(self):
312
        return self._create_pure_fp16_program()
313

314
    @LazyInitialized
315
    def _infer_pure_fp16_program(self):
316 317 318 319 320
        program = self._create_pure_fp16_program(is_infer_mode=True)
        self._infer_info.op_size['fp16'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp16']
        )
321

322
    @LazyInitialized
323 324 325
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
326 327

    @LazyInitialized
328 329 330 331
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

332 333 334 335
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

336 337 338 339 340
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

341 342
    @LazyInitialized
    def _train_program_id(self):
343
        program_id = _hash_with_id(self._train_program, self)
344 345 346
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
347
        return program_id
348

349 350 351 352
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

353 354 355
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
356 357 358
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
359 360
        return program_id

361 362 363 364
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

365 366 367
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
368 369 370
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
371 372
        return program_id

373 374 375 376
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

377 378
    @LazyInitialized
    def _param_grad_names(self):
379
        return _param_grad_names(self._train_program.desc, self._params)
380 381 382

    @LazyInitialized
    def _out_grad_names(self):
383 384 385 386 387
        return _out_grad_names(
            self._train_program.desc,
            self._create_program(is_infer_mode=True).desc.block(0).op_size(),
            len(self._outputs.var_ids),
        )
388

389
    @property
390 391 392 393 394 395 396 397 398 399 400 401 402 403
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

472 473 474 475 476 477 478 479 480 481 482 483
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

484 485 486
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
487 488 489 490 491 492 493
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
494

495 496 497 498 499 500 501 502 503
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
504 505
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
522 523 524 525 526 527 528 529 530 531
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
532 533 534 535 536 537

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
538 539 540 541 542 543
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
544 545 546 547 548 549 550 551 552 553
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
554 555
                outputs={"Out": var_grad_name},
            )
556 557 558
            return None

        to_processed_vars = list(
559 560
            filter(_need_aggregation, self._outputs.tolist())
        )
561 562 563
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

564
    @switch_to_static_graph
565
    def _append_backward_desc(self, main_program):
566 567
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
568
        targets = []
569
        for out in self._outputs.tolist():
570 571 572
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

573
        if targets:
574 575 576 577
            if self._build_strategy.build_cinn_pass:
                # TODO(Jiabin): Change this to True if we need this to be default option
                core.check_and_set_prim_all_enabled()
            backward.gradients(targets=targets, inputs=[])
578

579
        start_idx = len(main_program.block(0).ops) + len(self._outputs.tolist())
580 581

        self.prepare_gradient_aggregation(start_idx, main_program, program)
582

583 584
        return program

585 586 587
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
588
        The `@to_static` may only decorated a sub function which
589 590 591 592 593 594
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
595
            found_param = False
596
            for block in program.blocks:
597
                for op in block.ops:
598 599 600 601
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
602 603 604 605
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
606 607 608 609
                    break

        self._params = required_params

610 611 612 613 614 615
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
616
                    var_base = None
617
                    if not framework.global_var._in_eager_mode_:
618 619 620 621 622 623 624
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
625
                    else:
626 627 628 629 630 631 632
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
633
                    double_grads.append(var_base)
634
        return self._valid_vars(double_grads)
635

636
    def _get_end_op_index(self):
637 638 639 640 641
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
642
            infer_program = self._infer_program
643 644
        return infer_program.desc.block(0).op_size()

645 646
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
647

648 649
        self._cast_fp16_if_pure_fp16(in_vars)

650
        attrs = [
651
            'global_block',
652 653 654 655 656 657 658 659 660
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
661
        ]
662 663 664 665 666 667 668 669 670 671 672 673
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
674 675
        if self._cuda_graph_capture_mode:
            attrs.extend(
676 677 678 679 680 681 682 683 684 685 686 687
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
688 689 690
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
691 692 693 694 695 696 697
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
698

699
            _legacy_C_ops.run_program(
700 701
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
702
                self._valid_vars(out_vars),
703 704 705 706 707 708 709
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
710
        else:
711 712 713 714 715 716 717 718 719
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
720 721
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
722

723 724 725 726
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
727 728 729 730 731
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
732 733 734
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

735 736 737 738 739 740 741 742 743 744 745 746
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
747

748
    @switch_to_static_graph
749 750 751
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
752 753
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
754
        backward_start_op_index = forward_end_op_index + len(
755 756
            self._outputs.var_ids
        )
757
        backward_end_op_index = whole_program.desc.block(0).op_size()
758 759 760 761 762
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
763
        backward_builded_program = add_build_strategy_for(
764 765 766 767
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
768 769 770 771 772 773 774 775 776 777 778 779
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
780
        )
781

782 783 784
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
785 786 787 788 789 790
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
791
            "for_partial_block": "bool",
792 793 794 795
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
796 797 798 799
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
854
                backward_program.desc, True
855 856 857 858
            ):
                skip_vars.append(var_name)
        return skip_vars

859 860 861 862 863
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
864 865
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
866 867
        # Convert variable into VarBase and feed in training data.
        input_vars = []
868
        expected_place = framework._current_expected_place()
869
        for i, value in enumerate(flatten_inputs):
870
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
871
                var = None
872
                if not framework.global_var._in_eager_mode_:
873 874 875 876 877 878 879
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
880
                else:
881 882 883 884 885 886 887
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
888
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
889 890 891 892
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
893 894
                    expected_place
                ):
895 896
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
897 898
                else:
                    var = value
899
                var.name = self._inputs[i].desc.name()
900 901 902
            else:
                continue
            input_vars.append(var)
903

904 905 906
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

907 908
        def create_out(var_id):
            var = self._outputs[var_id]
909
            assert isinstance(var, framework.Variable)
910
            var_desc = var.desc
J
Jiabin Yang 已提交
911
            varbase = None
912 913 914 915

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

916
            if not framework.global_var._in_eager_mode_:
917 918 919 920 921 922 923
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
924
            else:
925 926 927 928 929 930 931
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
932
            var_base.stop_gradient = var.stop_gradient
933
            out_varbase_map[var_desc.name()] = var_base
934 935 936 937 938 939
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
940

941
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
942
        # Hold forward variables
J
Jiabin Yang 已提交
943
        tmp_scope_vec = None
944 945 946
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
947
        if not framework.global_var._in_eager_mode_:
948 949 950 951 952 953 954
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
955
            tmp_scope_vec.value().set_scope(inner_scope)
956 957
        else:
            tmp_scope_vec = [inner_scope]
958
        return tmp_scope_vec
959

960
    def _create_cuda_graph_vec(self):
961 962 963 964 965 966 967
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
968 969 970
        var.stop_gradient = True
        return var

971 972 973 974 975 976 977 978 979
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
980
        if outs is not None and len(outs) == 1:
981 982 983 984
            outs = outs[0]

        return outs

985 986 987 988
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

989
    def _is_no_value(self, var):
990 991 992
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
993 994
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
995 996 997 998 999 1000 1001
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1002
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1003 1004 1005 1006 1007
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1008 1009 1010
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1011 1012 1013 1014
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1015
            has_removed = len(out_vars) > len(res)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1026
    def _set_grad_type(self, params, train_program):
1027 1028 1029 1030 1031 1032 1033 1034
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1035
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1036 1037 1038 1039 1040
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1064 1065
                % type(self._params)
            )
1066

1067 1068 1069
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1070
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1071
                raise TypeError(
1072 1073 1074 1075
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1076
            param_and_buffer_names_set.add(var.name)
1077 1078

        for block in main_program.blocks:
1079
            for name, var in block.vars.items():
1080
                if isinstance(var, framework.Parameter):
1081
                    if name not in param_and_buffer_names_set:
1082
                        raise ValueError(
1083 1084 1085 1086 1087 1088
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1089 1090
                            % name
                        )
1091

1092
    def _valid_vars(self, vars):
1093
        return vars if vars else None
1094

1095

1096
def _create_fake_var():
1097
    """
1098
    Create a fake_var (force on CPU) to handle empty input or output
1099
    """
1100
    if not framework.global_var._in_eager_mode_:
J
Jiabin Yang 已提交
1101
        return [
1102 1103 1104 1105 1106 1107 1108
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1109 1110
        ]
    else:
1111
        return [
1112 1113 1114 1115 1116 1117 1118
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1119
        ]
1120 1121 1122 1123 1124 1125 1126


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1127 1128 1129 1130 1131 1132 1133
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1134 1135 1136


@switch_to_static_graph
1137
def add_build_strategy_for(
1138
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1139 1140
):
    if start_op_index < end_op_index:
1141 1142
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1143 1144
            build_strategy=build_strategy,
        )
1145 1146 1147
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1148 1149 1150
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1151 1152 1153 1154 1155 1156 1157
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program