composite_grad_desc_maker.h 22.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/op_call_stack.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
#include "paddle/fluid/prim/utils/static/static_global_utils.h"
#include "paddle/phi/core/enforce.h"
namespace paddle {
namespace prim {

/*
  This functor class is responsible for creating the gradient ops for the given
  operator fwd_op. After it is called (through operator()), the pairs of
  (gradient variable, corresponding input variable of fwd_op) will be added to
  grad_to_var. If an input variable of fwd_op is contained in no_grad_set, its
  gradient variable will be ignored or kEmptyVarName depending on the template
  argument DropEmptyIG in the derived classes.
 */

44
class CompositeGradOpMakerBase {
J
Jiabin Yang 已提交
45
 public:
46
  explicit CompositeGradOpMakerBase(
J
Jiabin Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
      const framework::OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const framework::BlockDesc* original_block,
      const std::vector<framework::BlockDesc*>& grad_block =
          std::vector<framework::BlockDesc*>())
      : fwd_op_(fwd_op),
        no_grad_set_(no_grad_set),
        grad_to_var_(grad_to_var),
        original_block_(original_block),
        acting_program_(framework::ProgramDesc()),
        grad_block_(grad_block) {
    // TODO(jiabin): This should always execute by one thread...
    StaticCompositeContext::Instance().SetBlock(
        acting_program_.MutableBlock(0));
  }

64
  virtual ~CompositeGradOpMakerBase() = default;
J
Jiabin Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

  virtual std::vector<std::unique_ptr<framework::OpDesc>> operator()() {
    this->Apply();
    std::vector<std::unique_ptr<framework::OpDesc>> ops;
    // TODO(jiabin): Support multiple blocks later
    for (auto* op : StaticCompositeContext::Instance().GetBlock()->AllOps()) {
      ops.emplace_back(new framework::OpDesc(*op));
      ops.back()->ResetBlock();
    }
    return ops;
  }

  virtual void Apply() = 0;

  paddle::experimental::Tensor GetSingleForwardOutput(const std::string& name) {
    framework::VarDesc* out_desc = this->SingleForwardOutput(name);
    paddle::experimental::Tensor out =
        paddle::experimental::Tensor(std::make_shared<DescTensor>(out_desc));
    return out;
  }

  paddle::experimental::Tensor GetSingleForwardInput(const std::string& name) {
    paddle::experimental::Tensor input = paddle::experimental::Tensor(
        std::make_shared<DescTensor>(this->SingleForwardInput(name)));
    return input;
  }

  paddle::experimental::Tensor GetSingleOutputGrad(const std::string& name) {
    paddle::experimental::Tensor output_grad = paddle::experimental::Tensor(
        std::make_shared<DescTensor>(this->SingleOutputGrad(name)));
    return output_grad;
  }

  paddle::experimental::Tensor GetSingleInputGrad(const std::string& name) {
    framework::VarDesc* input_grad_desc = this->SingleInputGrad(name);
    if (!input_grad_desc) return paddle::experimental::Tensor();
    paddle::experimental::Tensor input_grad = paddle::experimental::Tensor(
        std::make_shared<DescTensor>(input_grad_desc));
    return input_grad;
  }

  paddle::optional<paddle::experimental::Tensor> GetOptionalSingleForwardOutput(
      const std::string& name) {
    paddle::optional<paddle::experimental::Tensor> output_opt;
    framework::VarDesc* output_desc = this->SingleForwardOutput(name);
    if (!output_desc) return output_opt;
    paddle::experimental::Tensor output =
        paddle::experimental::Tensor(std::make_shared<DescTensor>(output_desc));
    output_opt = paddle::make_optional<paddle::experimental::Tensor>(output);
    return output_opt;
  }

  paddle::optional<paddle::experimental::Tensor> GetOptionalSingleForwardInput(
      const std::string& name) {
    paddle::optional<paddle::experimental::Tensor> input_opt;
    framework::VarDesc* input_desc = this->SingleForwardInput(name);
    if (!input_desc) return input_opt;
    paddle::experimental::Tensor input =
        paddle::experimental::Tensor(std::make_shared<DescTensor>(input_desc));
    input_opt = paddle::make_optional<paddle::experimental::Tensor>(input);
    return input_opt;
  }

  paddle::optional<paddle::experimental::Tensor> GetOptionalSingleOutputGrad(
      const std::string& name) {
    paddle::optional<paddle::experimental::Tensor> output_grad_opt;
    framework::VarDesc* output_grad_desc = this->SingleOutputGrad(name);
    if (!output_grad_desc) return output_grad_opt;
    paddle::experimental::Tensor output_grad = paddle::experimental::Tensor(
        std::make_shared<DescTensor>(output_grad_desc));
    output_grad_opt =
        paddle::make_optional<paddle::experimental::Tensor>(output_grad);
    return output_grad_opt;
  }

  std::vector<paddle::experimental::Tensor> GetMultiForwardOutput(
      const std::string& name) {
    std::vector<paddle::experimental::Tensor> outputs;
    std::vector<framework::VarDesc*> outputs_descs =
        this->MultiForwardOutput(name);
    outputs.reserve(outputs_descs.size());
    for (const auto& output_desc : outputs_descs) {
      outputs.emplace_back(paddle::experimental::Tensor(
          std::make_shared<DescTensor>(output_desc)));
    }
    return outputs;
  }

  std::vector<paddle::experimental::Tensor> GetMultiForwardInput(
      const std::string& name) {
    std::vector<paddle::experimental::Tensor> inputs;
    std::vector<framework::VarDesc*> inputs_descs =
        this->MultiForwardInput(name);
    inputs.reserve(inputs_descs.size());
    for (const auto& input_desc : inputs_descs) {
      inputs.emplace_back(paddle::experimental::Tensor(
          std::make_shared<DescTensor>(input_desc)));
    }
    return inputs;
  }

  std::vector<paddle::experimental::Tensor> GetMultiOutputGrad(
      const std::string& name) {
    std::vector<paddle::experimental::Tensor> outputs_grads;
    std::vector<framework::VarDesc*> outputs_grads_descs =
        this->MultiOutputGrad(name);
    outputs_grads.reserve(outputs_grads_descs.size());
    for (const auto& output_grad_desc : outputs_grads_descs) {
      outputs_grads.emplace_back(paddle::experimental::Tensor(
          std::make_shared<DescTensor>(output_grad_desc)));
    }
    return outputs_grads;
  }

  std::vector<paddle::experimental::Tensor> GetMultiInputGrad(
      const std::string& name) {
    std::vector<paddle::experimental::Tensor> inputs_grads;
    std::vector<framework::VarDesc*> inputs_grads_descs =
        this->MultiInputGrad(name);
    inputs_grads.reserve(inputs_grads_descs.size());
    for (const auto& input_grad_desc : inputs_grads_descs) {
      if (input_grad_desc) {
        inputs_grads.emplace_back(paddle::experimental::Tensor(
            std::make_shared<DescTensor>(input_grad_desc)));
      } else {
        inputs_grads.emplace_back(paddle::experimental::Tensor());
      }
    }
    return inputs_grads;
  }

  std::vector<paddle::optional<paddle::experimental::Tensor>>
  GetOptionalMultiForwardOutput(const std::string& name) {
    std::vector<paddle::optional<paddle::experimental::Tensor>> outputs_opt;
    std::vector<framework::VarDesc*> outputs_descs =
        this->MultiForwardOutput(name);
    outputs_opt.reserve(outputs_descs.size());
    for (const auto& output_desc : outputs_descs) {
      if (output_desc) {
        outputs_opt.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor(
                    std::make_shared<DescTensor>(output_desc))));
      } else {
        outputs_opt.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor()));
      }
    }
    return outputs_opt;
  }

  std::vector<paddle::optional<paddle::experimental::Tensor>>
  GetOptionalMultiForwardInput(const std::string& name) {
    std::vector<paddle::optional<paddle::experimental::Tensor>> inputs_opt;
    std::vector<framework::VarDesc*> inputs_descs =
        this->MultiForwardInput(name);
    inputs_opt.reserve(inputs_descs.size());
    for (const auto& input_desc : inputs_descs) {
      if (input_desc) {
        inputs_opt.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor(
                    std::make_shared<DescTensor>(input_desc))));
      } else {
        inputs_opt.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor()));
      }
    }
    return inputs_opt;
  }

  std::vector<paddle::optional<paddle::experimental::Tensor>>
  GetOptionalMultiOutputGrad(const std::string& name) {
    std::vector<paddle::optional<paddle::experimental::Tensor>> outputs_grads;
    std::vector<framework::VarDesc*> outputs_grads_descs =
        this->MultiOutputGrad(name);
    outputs_grads.reserve(outputs_grads_descs.size());
    for (const auto& output_grad_desc : outputs_grads_descs) {
      if (output_grad_desc) {
        outputs_grads.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor(
                    std::make_shared<DescTensor>(output_grad_desc))));
      } else {
        outputs_grads.emplace_back(
            paddle::make_optional<paddle::experimental::Tensor>(
                paddle::experimental::Tensor()));
      }
    }
    return outputs_grads;
  }

  paddle::experimental::Tensor* GetOutputPtr(
      paddle::experimental::Tensor* input) {
    if (input->defined()) return input;
    return nullptr;
  }

  std::vector<paddle::experimental::Tensor*> GetOutputPtr(
      const std::vector<paddle::experimental::Tensor*>& inputs) {
    std::vector<paddle::experimental::Tensor*> output_ptrs;
    output_ptrs.reserve(inputs.size());
    for (const auto& input : inputs) {
      if (input->defined())
        output_ptrs.emplace_back(input);
      else
        output_ptrs.emplace_back(nullptr);
    }
    return output_ptrs;
  }

  std::string GetOutputName(const paddle::experimental::Tensor& output) {
    if (!output.defined()) return framework::kEmptyVarName;
    return static_cast<prim::DescTensor*>(output.impl().get())->Name();
  }

  std::vector<std::string> GetOutputName(
      const std::vector<paddle::experimental::Tensor>& outputs) {
    std::vector<std::string> out_names;
    out_names.reserve(outputs.size());
    for (const auto& output : outputs) {
      if (!output.defined())
        out_names.emplace_back(framework::kEmptyVarName);
      else
        out_names.emplace_back(
            static_cast<prim::DescTensor*>(output.impl().get())->Name());
    }
    return out_names;
  }

 protected:
  void CopyVarFromOrig(const std::string& name) const {
    VLOG(6) << "Copy Var: " << name << "from block: " << original_block_
            << " to block: " << StaticCompositeContext::Instance().GetBlock();
    framework::VarDesc* original_var = original_block_->FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        original_var,
        phi::errors::InvalidArgument(
            "Can't find var: %s in block %s", name, original_block_));
    *StaticCompositeContext::Instance().GetBlock()->Var(name) = *original_var;
  }

  framework::VarDesc* SingleInputGrad(const std::string& name,
                                      bool drop_empty_grad = true) const {
    auto var_name = this->SingleForwardInputVarName(name);
    auto grad_var_name = framework::GradVarName(var_name);
    if (no_grad_set_.empty() || !no_grad_set_.count(grad_var_name)) {
      (*this->grad_to_var_)[grad_var_name] = var_name;
      VLOG(8) << "Valid gradients: " << grad_var_name;
    } else {
      // TODO(jiabin): Will this cause fill zeros error?
      grad_var_name = framework::kEmptyVarName;
      if (drop_empty_grad) return nullptr;
    }
321

J
Jiabin Yang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    if (original_block_->HasVar(grad_var_name)) {
      // Copy Var from original block to active block, or create a new one.
      CopyVarFromOrig(grad_var_name);
      return StaticCompositeContext::Instance().GetBlock()->FindVar(
          grad_var_name);
    } else {
      return StaticCompositeContext::Instance().GetBlock()->Var(grad_var_name);
    }
  }

  framework::VarDesc* SingleOutputGrad(const std::string& name) const {
    auto var_name = this->SingleForwardOutputVarName(name);
    auto grad_var_name = framework::GradVarName(var_name);
    (*this->grad_to_var_)[grad_var_name] = var_name;
    VLOG(8) << "Valid gradients: " << grad_var_name;
337 338 339 340 341 342

    auto target_grad = StaticCompositeContext::Instance().GetTargetGradName();
    if (target_grad.find(grad_var_name) != target_grad.end()) {
      grad_var_name = target_grad.at(grad_var_name);
    }

J
Jiabin Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    if (original_block_->HasVar(grad_var_name)) {
      // Copy Var from original block to active block, or create a new one.
      CopyVarFromOrig(grad_var_name);
      return StaticCompositeContext::Instance().GetBlock()->FindVar(
          grad_var_name);
    } else {
      return StaticCompositeContext::Instance().GetBlock()->Var(grad_var_name);
    }
  }

  std::vector<framework::VarDesc*> MultiInputGrad(
      const std::string& name, bool drop_empty_grad = true) const {
    std::vector<std::string> ret_val;
    std::vector<framework::VarDesc*> input_grads;
    auto var_names = this->MultiForwardInputVarName(name);
    ret_val.reserve(var_names.size());
    std::transform(var_names.begin(),
                   var_names.end(),
                   std::back_inserter(ret_val),
                   [this](const std::string& fwd_var_name) -> std::string {
                     auto g_name = framework::GradVarName(fwd_var_name);
                     if (no_grad_set_.empty() || !no_grad_set_.count(g_name)) {
                       (*this->grad_to_var_)[g_name] = fwd_var_name;
                       return g_name;
                     } else {
                       return framework::kEmptyVarName;
                     }
                   });
    if (!drop_empty_grad) {
      for (const auto& name : ret_val) {
        if (original_block_->HasVar(name)) {
          // Copy Var from original block to active block, or create a new one.
          CopyVarFromOrig(name);
          input_grads.emplace_back(
              StaticCompositeContext::Instance().GetBlock()->FindVar(name));
        } else {
          input_grads.emplace_back(
              StaticCompositeContext::Instance().GetBlock()->Var(name));
        }
      }
      return input_grads;
    }
    PADDLE_ENFORCE_LE(
        var_names.size(),
        1UL,
        platform::errors::Unavailable(
            "BUG from operator developer:"
            " for input argument with a list of variables, "
            " drop_empty_grad is not allowed because it makes"
            " the correspondence bewteen a variable and its gradient"
            " ambiguous."));

    std::vector<std::string> dropped_ret_val;
    dropped_ret_val.reserve(ret_val.size());
    std::copy_if(
        ret_val.begin(),
        ret_val.end(),
        std::back_inserter(dropped_ret_val),
        [](const std::string& str) { return str != framework::kEmptyVarName; });
    for (const auto& name : dropped_ret_val) {
      // TODO(jiabin): Will this cause fill zeros error?
      if (original_block_->HasVar(name)) {
        // Copy Var from original block to active block, or create a new one.
        CopyVarFromOrig(name);
        input_grads.emplace_back(
            StaticCompositeContext::Instance().GetBlock()->FindVar(name));
      } else {
        input_grads.emplace_back(
            StaticCompositeContext::Instance().GetBlock()->Var(name));
      }
    }
    return input_grads;
  }

  std::vector<framework::VarDesc*> MultiOutputGrad(
      const std::string& name) const {
    std::vector<std::string> ret_val;
    auto out_names = this->MultiForwardOutputVarName(name);
    ret_val.reserve(out_names.size());
    std::transform(out_names.begin(),
                   out_names.end(),
                   std::back_inserter(ret_val),
                   [this](const std::string& fwd_var_name) -> std::string {
                     auto g_name = framework::GradVarName(fwd_var_name);
                     (*this->grad_to_var_)[g_name] = fwd_var_name;
                     return g_name;
                   });
    std::vector<framework::VarDesc*> grad_out;
431 432 433 434 435
    for (auto name : ret_val) {
      auto target_grad = StaticCompositeContext::Instance().GetTargetGradName();
      if (target_grad.find(name) != target_grad.end()) {
        name = target_grad.at(name);
      }
J
Jiabin Yang 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
      // TODO(jiabin): Will this cause fill zeros error?
      if (original_block_->HasVar(name)) {
        // Copy Var from original block to active block, or create a new one.
        CopyVarFromOrig(name);
        grad_out.emplace_back(
            StaticCompositeContext::Instance().GetBlock()->FindVar(name));
      } else {
        grad_out.emplace_back(
            StaticCompositeContext::Instance().GetBlock()->Var(name));
      }
    }
    return grad_out;
  }

  framework::VarDesc* SingleForwardInput(const std::string& name) const {
    // Copy Var from original block to active block, or create a new one.
    CopyVarFromOrig(fwd_op_.Input(name).at(0));
    return StaticCompositeContext::Instance().GetBlock()->FindVar(
        fwd_op_.Input(name).at(0));
  }

  framework::VarDesc* SingleForwardOutput(const std::string& name) const {
    // Copy Var from original block to active block, or create a new one.
    CopyVarFromOrig(fwd_op_.Output(name).at(0));
    return StaticCompositeContext::Instance().GetBlock()->FindVar(
        fwd_op_.Output(name).at(0));
  }

  std::vector<framework::VarDesc*> MultiForwardInput(
      const std::string& name) const {
    std::vector<framework::VarDesc*> result;
    for (const auto& n : fwd_op_.Input(name)) {
      // Copy Var from original block to active block, or create a new one.
      CopyVarFromOrig(n);
      result.emplace_back(
          StaticCompositeContext::Instance().GetBlock()->FindVar(n));
    }
    return result;
  }

  std::vector<framework::VarDesc*> MultiForwardOutput(
      const std::string& name) const {
    std::vector<framework::VarDesc*> result;
    for (const auto& n : fwd_op_.Output(name)) {
      // Copy Var from original block to active block, or create a new one.
      CopyVarFromOrig(n);
      result.emplace_back(
          StaticCompositeContext::Instance().GetBlock()->FindVar(n));
    }
    return result;
  }

  void RecoverOutputName(const paddle::experimental::Tensor& output,
                         const std::string& origin_name) {
    if (origin_name == framework::kEmptyVarName) return;
491 492 493
    VLOG(4) << "Recover: "
            << static_cast<prim::DescTensor*>(output.impl().get())->Name()
            << " To: " << origin_name;
J
Jiabin Yang 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    prim::StaticCompositeContext::Instance().GetBlock()->RenameVar(
        static_cast<prim::DescTensor*>(output.impl().get())->Name(),
        origin_name);
  }

  void RecoverOutputName(
      const std::vector<paddle::experimental::Tensor>& outputs,
      const std::vector<std::string>& origin_names) {
    PADDLE_ENFORCE_EQ(outputs.size(),
                      origin_names.size(),
                      platform::errors::InvalidArgument(
                          "The size of outputs must be equal to the size "
                          "of the origin_names.",
                          outputs.size(),
                          origin_names.size()));
    for (size_t i = 0; i < outputs.size(); ++i) {
      if (origin_names[i] == framework::kEmptyVarName) continue;
      prim::StaticCompositeContext::Instance().GetBlock()->RenameVar(
          static_cast<prim::DescTensor*>(outputs[i].impl().get())->Name(),
          origin_names[i]);
    }
  }

  std::string SingleForwardInputVarName(const std::string& name) const {
    return fwd_op_.Input(name).at(0);
  }

  std::string SingleForwardOutputVarName(const std::string& name) const {
    return fwd_op_.Output(name).at(0);
  }

  std::vector<std::string> MultiForwardOutputVarName(
      const std::string& name) const {
    return fwd_op_.Output(name);
  }

  std::vector<std::string> MultiForwardInputVarName(
      const std::string& name) const {
    return fwd_op_.Input(name);
  }

  static std::vector<std::string> EmptyInput() { return {}; }

  static std::vector<std::string> EmptyOutput() { return {}; }

  static std::vector<std::string> EmptyInputGrad() { return {}; }

  static std::vector<std::string> EmptyOutputGrad() { return {}; }

  std::vector<std::string> InputNames() const {
    return this->fwd_op_.InputNames();
  }

  std::vector<std::string> OutputNames() const {
    return this->fwd_op_.OutputNames();
  }

  const std::unordered_map<std::string, framework::Attribute>& Attrs() const {
    return fwd_op_.GetAttrMap();
  }

  const std::unordered_map<std::string, framework::Attribute>& RuntimeAttrs()
      const {
    return fwd_op_.GetRuntimeAttrMap();
  }

  const framework::Attribute& GetAttr(const std::string& name) const {
    auto& map = fwd_op_.GetAttrMap();
    auto it = map.find(name);
    PADDLE_ENFORCE_NE(
        it,
        map.end(),
        platform::errors::NotFound("Cannot find attribute (%s).", name));
    return it->second;
  }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    return PADDLE_GET_CONST(T, GetAttr(name));
  }

  std::string ForwardOpType() const { return this->fwd_op_.Type(); }
  const framework::BlockDesc* GetForwardOpBlock() const {
    return fwd_op_.Block();
  }

 protected:
  bool HasInput(const std::string& name) const {
    return (fwd_op_.Inputs().count(name) > 0);
  }

  bool HasOutput(const std::string& name) const {
    return (fwd_op_.Outputs().count(name) > 0);
  }

 private:
  const framework::OpDesc& fwd_op_;
  const std::unordered_set<std::string>& no_grad_set_;
  std::unordered_map<std::string, std::string>* grad_to_var_;
  const framework::BlockDesc* original_block_;
  framework::ProgramDesc acting_program_;

 protected:
  std::vector<framework::BlockDesc*> grad_block_;
};

}  // namespace prim
}  // namespace paddle