tensor.py 64.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
32
from .utils import check_shape
Y
Yu Yang 已提交
33 34

__all__ = [
L
li099 已提交
35 36 37
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
38
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
39
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
W
wangchaochaohu 已提交
45
    Create a variable, which will hold a Tensor with data type dtype.
46 47

    Args:
W
wangchaochaohu 已提交
48 49 50 51
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
53
            default value is False.
54 55

    Returns:
W
wangchaochaohu 已提交
56
        Variable: The tensor to be created according to dtype.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
62 63
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
64 65 66 67
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
68
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
69 70
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
71 72


73 74
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
75
                     name=None,
76 77 78 79
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
80
	:api_attr: Static Graph
S
swtkiwi 已提交
81

82
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
83 84 85 86 87
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
95 96 97
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
98
        default_initializer (Initializer, optional): Initializer for the parameter
99 100

    Returns:
101
        The created parameter.
Y
yuyang18 已提交
102 103

    Examples:
104 105
        .. code-block:: python

106
            import paddle.fluid as fluid
107 108
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
109
    """
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
129
    helper = LayerHelper("create_parameter", **locals())
130
    if attr is None:
X
xuwei06 已提交
131
        attr = ParamAttr(name=name)
132 133
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
134 135 136
                                   default_initializer)


137 138 139 140 141 142 143
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
144
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
145

146 147 148
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
149
                      variable will be filled with it.
150 151
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
152
                           Default: False
153
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
154
                         Default: False
155 156
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
157 158

    Returns:
159
        Variable: The created Variable
F
fengjiayi 已提交
160 161 162 163

    Examples:
        .. code-block:: python

164
            import paddle.fluid as fluid
165 166
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
167
                                           persistable=True, force_cpu=True, name='new_var')
168
    """
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
186 187
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
188 189 190 191 192
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
193 194 195
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
196

Q
Qiao Longfei 已提交
197 198 199
    return var


200
def cast(x, dtype):
Y
Yu Yang 已提交
201
    """
202 203 204
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
205

206 207 208
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211 212 213
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle.fluid as fluid
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
245
    """
246 247
    check_variable_and_dtype(
        x, 'x',
248 249
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
250 251 252 253 254 255
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
256
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


266
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
267
    """
268
    This OP concatenates the input along the axis.
269 270

    Args:
271 272
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
273 274
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
275
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
276
            as ``axis+R``. Default is 0.
277 278 279
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
280
    Raises:
281 282
        TypeError: ``input`` must be one of list, tuple or Tensor.
        TypeError: The data type of ``input`` must be one of bool, float16, float32, float64, int32 and int64. 
283
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
284
        TypeError: All the Tensors in ``input`` must have the same data type.
285 286

    Returns:
287
        Tensor: A Tensor with the same data type as ``input``.
288 289 290

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
291

292
            import paddle.fluid as fluid
293 294
            import numpy as np

295 296 297 298 299 300
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
301 302 303 304
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
305 306
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
307 308
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
309 310 311 312 313 314 315 316
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
317
    """
318 319

    if in_dygraph_mode():
S
songyouwei 已提交
320 321
        if isinstance(axis, Variable):
            axis = axis.numpy()
322
            axis = axis.item(0)
323
        return core.ops.concat(input, 'axis', axis)
324

325 326 327 328 329 330 331 332 333 334 335
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
336
        input = [input]
337
    check_type(axis, 'axis', (int, Variable), 'concat')
338

339 340 341 342 343
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

344
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
345
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
346 347 348

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
349
                "number of the elements must be 1, but received %s." % len(input)
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
369 370 371
    return out


G
Guo Sheng 已提交
372
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
373
    """
G
Guo Sheng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
424 425

    Args:
G
Guo Sheng 已提交
426 427 428 429 430 431 432
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
433 434

    Returns:
G
Guo Sheng 已提交
435 436 437
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
438 439 440 441

    Examples:
        .. code-block:: python

442
            import paddle.fluid as fluid
443
            import numpy as np
G
Guo Sheng 已提交
444 445 446 447 448 449 450
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
451
    """
452 453 454 455 456 457 458 459 460 461 462
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

463 464 465 466 467
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
468
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
469 470 471
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
472
        type='tensor_array_to_tensor',
L
li099 已提交
473 474 475
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
476 477
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
478 479 480
    return out, out_index


481
def sums(input, out=None):
F
fengjiayi 已提交
482
    """
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
504 505

    Args:
506 507 508 509
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
510 511

    Returns:
512 513
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
514 515

    Examples:
F
fengjiayi 已提交
516
        .. code-block:: python
K
kavyasrinet 已提交
517

518 519 520 521 522 523 524 525 526
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
527

528 529
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
530
    """
531 532 533 534 535 536 537 538 539
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
540 541
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
542 543
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
544 545 546 547
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
548 549 550 551 552
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
553 554 555
    return out


F
fengjiayi 已提交
556
def assign(input, output=None):
557
    """
558 559 560
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
561

562
    The OP copies the :attr:`input` to the :attr:`output`.
563

564 565
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
566
            float16, float32, float64, int32 and int64.
567 568
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
569 570

    Returns:
571
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
572 573 574

    Examples:
        .. code-block:: python
575

576
          import paddle.fluid as fluid
577 578 579 580 581 582
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
583
    """
Y
Yu Yang 已提交
584
    helper = LayerHelper('assign', **locals())
585
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
586
    if isinstance(input, Variable):
587 588 589 590
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
591 592 593
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
594
        helper.append_op(
R
robot 已提交
595
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
596 597
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
598 599 600 601
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
602
            value_name = "fp32_values"
603
            values = [float(v) for v in input.flat]
604
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
605
            value_name = "int32_values"
606
            values = [int(v) for v in input.flat]
607 608 609
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
610
        else:
611 612
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
613
                "the data type of 'input' must be bool, float32, int32 or int64, but "
614
                "received %s." % convert_dtype(dtype))
615 616 617
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
618 619 620
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
621 622 623 624 625 626
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
627
                value_name: values
X
xuwei06 已提交
628 629
            })

Y
Yu Yang 已提交
630 631 632
    return output


633
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
634
    """
635
	:alias_main: paddle.fill_constant
636
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
637

W
wangchaochaohu 已提交
638
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
639
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
640

T
tianshuo78520a 已提交
641
    The attribute `stop_gradient` of the created Tensor is set to True.
642 643

    Args:
644 645 646
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
647
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
648
            be float16, float32, float64, int32, int64.
649 650 651 652 653 654
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
655 656
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
657 658

    Returns:
659
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
660

661 662 663
    Examples:
        .. code-block:: python

664
          import paddle.fluid as fluid
665
          # attr shape is a list which doesn't contain  Tensor.
666 667
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
668
          # data1=[[5], [5]] data2=[[5], [5]]
669

670
          # attr shape is a list which contains Tensor.
671
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
672
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
673

674
          # attr shape is a Tensor.
675
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
676
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
677
          
678
          # attr value is a Tensor.
W
wangchaochaohu 已提交
679 680
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
681
    """
682

W
wangchaochaohu 已提交
683
    attrs = {'force_cpu': force_cpu}
684
    dtype = convert_dtype(dtype)
685
    if not isinstance(value, Variable):
686
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
687 688 689
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
690 691

    if in_dygraph_mode():
692
        shape = utils.convert_shape_to_list(shape)
693 694
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
695 696

        if isinstance(value, Variable):
697
            if dtype in ['int64', 'int32']:
698
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
699
            else:
700
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
701

702 703
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
704 705
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
706 707 708
        out.stop_gradient = True
        return out

709 710 711
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
712 713
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
714 715
        inputs['ValueTensor'] = value

716
    check_shape(shape)
717
    check_dtype(dtype, 'dtype',
718 719 720
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
721

722 723 724 725 726
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
727
    utils.get_shape_tensor_inputs(
728
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
729

Y
Yu Yang 已提交
730
    if out is None:
X
Xin Pan 已提交
731
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
732
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
733 734
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
735
        inputs=inputs,
Y
Yu Yang 已提交
736
        outputs={'Out': [out]},
L
liym27 已提交
737
        attrs=attrs,
M
minqiyang 已提交
738
        stop_gradient=True)
Y
Yu Yang 已提交
739 740 741 742
    out.stop_gradient = True
    return out


743
@deprecated(since='1.8.0', update_to="paddle.fill_constant")
Y
yuyang18 已提交
744
@templatedoc()
Y
Yu Yang 已提交
745 746 747 748 749
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
750 751
                                  output_dim_idx=0,
                                  force_cpu=False):
752
    """
T
tianshuo78520a 已提交
753
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
754 755 756 757
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
758 759

    Args:
W
wangchaochaohu 已提交
760 761 762 763 764 765 766 767 768 769 770
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
771
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
772 773

    Returns:
W
wangchaochaohu 已提交
774
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
775 776 777 778 779

    Examples:

        .. code-block:: python

780
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
781
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
782
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
783
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
784

785
    """
Y
Yu Yang 已提交
786
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
787
    out = helper.create_variable_for_type_inference(dtype=dtype)
788 789 790 791 792 793
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
794
        'force_cpu': force_cpu
795 796 797 798 799
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
800 801 802 803
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
804
        attrs=attrs)
Y
Yu Yang 已提交
805 806 807 808
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
809 810
def argmin(x, axis=0):
    """
811 812 813
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
814

S
sneaxiy 已提交
815 816
    **argmin**

817 818
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
819 820

    Args:
821 822 823 824 825
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
826

S
sneaxiy 已提交
827
    Returns:
828
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
829

S
sneaxiy 已提交
830 831
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
832

833
            import paddle.fluid as fluid
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
861
    """
862 863 864
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
865
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
866
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
867 868 869 870 871
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
872
    out.stop_gradient = True
S
sneaxiy 已提交
873 874 875 876 877 878 879
    return out


def argmax(x, axis=0):
    """
    **argmax**

880 881
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
882 883

    Args:
884 885 886 887 888
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
889

S
sneaxiy 已提交
890
    Returns:
891
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
892

S
sneaxiy 已提交
893 894
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
895

896
            import paddle.fluid as fluid
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
924
    """
925 926 927
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
928
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
929
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
930 931 932 933 934
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
935
    out.stop_gradient = True
S
sneaxiy 已提交
936 937 938
    return out


939
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
940
    """
941 942 943
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
944

945 946 947
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
948 949

    Args:
950 951 952 953 954
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
955 956 957
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
958 959 960
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
961 962

    Returns:
963 964 965
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
966 967 968 969

    Examples:
        .. code-block:: python

970
            import paddle.fluid as fluid
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1012
    """
1013 1014 1015
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1016
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1017 1018 1019 1020
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1021 1022 1023 1024
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1025
                 'Indices': ids},
1026 1027
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1028 1029 1030
    return out, ids


Y
Yang Yu 已提交
1031
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1032
    """
1033 1034
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1035

1036
    Parameters:
1037
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1038
        dtype (np.dtype|str): Data type of output Tensor, it supports
1039
            bool, float16, float32, float64, int32 and int64.
1040 1041
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1042
            Default: False.
1043 1044

    Returns:
1045
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1046 1047 1048 1049

    Examples:
        .. code-block:: python

1050
          import paddle.fluid as fluid
1051 1052 1053 1054 1055
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1056 1057 1058 1059
    """
    return fill_constant(value=1.0, **locals())


1060
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1061
    """
1062 1063
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1064

1065
    Parameters:
1066
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1067
        dtype (np.dtype|str): Data type of output Tensor, it supports
1068
            bool, float16, float32, float64, int32 and int64.
1069 1070
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1071
            Default: False.
1072 1073
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1074 1075

    Returns:
1076
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1077 1078 1079 1080

    Examples:
        .. code-block:: python

1081
          import paddle.fluid as fluid
1082
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1083 1084 1085 1086
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1087 1088
    """
    return fill_constant(value=0.0, **locals())
1089 1090


F
fengjiayi 已提交
1091 1092
def reverse(x, axis):
    """
1093 1094 1095
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1096

1097
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1123
    Parameters:
1124 1125
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1126 1127
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1128 1129
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1130 1131

    Returns:
1132
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1133 1134 1135 1136

    Examples:
        .. code-block:: python

1137
          import paddle.fluid as fluid
1138 1139 1140 1141
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1152
    """
1153 1154 1155
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1156 1157 1158
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1159
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1160 1161
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1162
        inputs={'X': x},
F
fengjiayi 已提交
1163 1164 1165 1166 1167
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1168 1169 1170 1171 1172 1173 1174
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1175 1176 1177
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1193 1194
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1195
        file_path(str): The file path where variables will be saved.
1196
        overwrite(bool): Whether or not cover the given file when it has already
1197 1198
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1199 1200 1201 1202 1203 1204 1205 1206

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1207
            import paddle.fluid as fluid
1208 1209 1210 1211 1212 1213 1214
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1227
    Loads a list of variable from a single file.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1239 1240 1241 1242


def has_inf(x):
    """
1243 1244 1245
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1246

1247 1248 1249
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1250
       x (Variable): The Tensor/LoDTensor to be checked.
1251 1252

    Returns:
L
liu zhengxi 已提交
1253
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1254 1255 1256 1257 1258 1259 1260 1261
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1262
    """
1263
    check_type(x, 'x', (Variable), 'has_inf')
1264
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1265
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1266 1267 1268 1269 1270 1271
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1272 1273 1274
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1275

1276 1277 1278
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1279
       x (Variable): The Tensor/LoDTensor to be checked.
1280 1281

    Returns:
L
liu zhengxi 已提交
1282
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1283 1284 1285 1286 1287 1288 1289 1290
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1291
    """
1292
    check_type(x, 'x', (Variable), 'has_nan')
1293
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1294
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1295 1296 1297 1298 1299 1300
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1301 1302 1303
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1304

1305 1306 1307 1308 1309 1310 1311 1312
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1313 1314 1315 1316 1317

    Examples:

        .. code-block:: python

1318
            import paddle.fluid as fluid
1319 1320 1321
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1322
            out = fluid.layers.isfinite(var)
1323
    """
1324 1325
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1326
    helper = LayerHelper("isfinite", **locals())
1327

1328
    out = helper.create_variable_for_type_inference(dtype='bool')
1329 1330
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1331 1332


1333
def range(start, end, step, dtype, name=None):
W
whs 已提交
1334
    """
1335
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1336

1337 1338
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1339

1340 1341
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1342

L
Liufang Sang 已提交
1343
    Parameters:
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1367 1368 1369 1370 1371

    examples:

        .. code-block:: python

1372
            import paddle.fluid as fluid
W
whs 已提交
1373

1374 1375
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1376

1377 1378 1379 1380 1381 1382 1383
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1384

W
whs 已提交
1385
    if not isinstance(start, Variable):
1386 1387
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1388 1389
    elif start.dtype != dtype:
        start = cast(start, dtype)
1390

W
whs 已提交
1391
    if not isinstance(end, Variable):
1392 1393
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1394 1395
    elif end.dtype != dtype:
        end = cast(end, dtype)
1396

W
whs 已提交
1397
    if not isinstance(step, Variable):
1398 1399
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1400 1401
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1402

1403 1404
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1405

1406 1407 1408 1409
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1410 1411 1412 1413 1414
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1415
        outputs={'Out': out})
1416
    out.stop_gradient = True
W
whs 已提交
1417
    return out
Z
zhoukunsheng 已提交
1418 1419


1420
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1421
    """
1422
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1423 1424

    Args:
1425 1426 1427 1428
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1429
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1430
            or a Tensor of shape [1] with data type int32 or int64.
W
wangchaochaohu 已提交
1431
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1432
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1433 1434
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1435 1436

    Returns:
1437
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1438 1439
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1440

1441
    Raises:
1442 1443 1444 1445 1446
        TypeError: The ``dtype`` must be one of int32, int64, float32 and float64.
        TypeError: The type of ``num`` must be int When it's not a Tensor.
        TypeError: The data type of ``num`` must be int32  When it's  a Tensor.
        TypeError: The data type of ``start`` and  ``stop`` must be same as ``dtype`` When it's  a Tensor.

1447 1448


Z
zhoukunsheng 已提交
1449
    Examples:
Z
zhoukunsheng 已提交
1450 1451
        .. code-block:: python

1452
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1453 1454
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1455 1456

    """
1457 1458
    if dtype is None:
        dtype = 'float32'
1459 1460 1461 1462 1463
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1464
    if not isinstance(start, Variable):
1465
        tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1466
    if not isinstance(stop, Variable):
1467
        tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1468
    if not isinstance(num, Variable):
1469
        tensor_num = fill_constant([1], 'int32', num)
1470
    if in_dygraph_mode():
1471 1472
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1473 1474 1475

    helper = LayerHelper("linspace", **locals())

1476 1477 1478 1479
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    else:
        check_type(num, 'num', (int), 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1493 1494 1495

    helper.append_op(
        type='linspace',
1496 1497 1498 1499
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1500 1501
        outputs={'Out': [out]})
    return out
1502 1503


Z
zhoukunsheng 已提交
1504 1505
def zeros_like(x, out=None):
    """
1506
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1507 1508 1509
    with `x`.

    Args:
1510 1511 1512 1513 1514 1515
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1516 1517

    Returns:
1518 1519 1520
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1521 1522 1523 1524

    Examples:
        .. code-block:: python

1525
          import paddle.fluid as fluid
1526
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1527 1528
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1529 1530
    """

1531 1532
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1533 1534 1535
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1536 1537 1538
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1539
            'zeros_like')
1540

Z
zhoukunsheng 已提交
1541 1542 1543 1544
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1545 1546


1547
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1548 1549
def diag(diagonal):
    """
1550 1551 1552
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1553

1554
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1555 1556

    Args:
1557 1558
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1559 1560

    Returns:
1561 1562
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1563 1564 1565 1566 1567 1568 1569

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1570 1571 1572

          import paddle.fluid as fluid
          import numpy as np
1573 1574 1575
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1576 1577

    """
1578 1579 1580
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1593 1594


1595 1596 1597 1598 1599
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1600
    """
1601
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1602 1603 1604

    Args:
        num_rows(int): the number of rows in each batch tensor.
1605 1606
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1607 1608
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1609
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1610 1611 1612 1613
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1614 1615

    Returns:
1616
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1617 1618 1619
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1620 1621 1622 1623 1624

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1625 1626
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1627
          #  [0, 1, 0]
1628 1629
          #  [0, 0, 1]]

1630
          data = fluid.layers.eye(2, 3, dtype='int32')
1631
          # [[1, 0, 0]
1632
          #  [0, 1, 0]]
1633 1634

          data = fluid.layers.eye(2, batch_shape=[3])
1635 1636 1637 1638 1639
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1640 1641
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1642 1643 1644 1645 1646
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1669 1670

    if batch_shape is not None:
1671 1672 1673 1674 1675 1676 1677
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1678 1679
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1680
        for batch_val in (batch_shape):
1681 1682
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1683 1684 1685 1686 1687 1688

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1689 1690 1691
    return out


Z
zhoukunsheng 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1704
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1715 1716
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1717 1718 1719 1720

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1721 1722 1723 1724
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1725 1726 1727 1728 1729 1730
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out