ConvBaseLayer.cpp 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvBaseLayer.h"
16
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23
namespace paddle {

bool ConvBaseLayer::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
C
chengduoZH 已提交
24
  isDeconv_ = (config_.type() == "exconv" || config_.type() == "cudnn_conv")
C
chengduoZH 已提交
25 26
                  ? false
                  : true;
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39
  /* Initialize the convolutional layer parameter */
  numFilters_ = config_.num_filters();
  sharedBiases_ = config_.shared_biases();
  for (auto& inputConfig : config_.inputs()) {
    const ConvConfig& conf = inputConfig.conv_conf();
    padding_.push_back(conf.padding());
    stride_.push_back(conf.stride());
    filterSize_.push_back(conf.filter_size());
    paddingY_.push_back(conf.padding_y());
    strideY_.push_back(conf.stride_y());
    filterSizeY_.push_back(conf.filter_size_y());
    channels_.push_back(conf.channels());
L
Luo Tao 已提交
40 41
    imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y()
                                              : conf.img_size());
42
    imgSizeW_.push_back(conf.img_size());
Z
zhangjinchao01 已提交
43 44
    groups_.push_back(conf.groups());
    filterChannels_.push_back(conf.filter_channels());
L
Luo Tao 已提交
45
    outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x());
46
    outputW_.push_back(conf.output_x());
47 48 49 50 51 52

    paddingZ_.push_back(conf.padding_z());
    strideZ_.push_back(conf.stride_z());
    filterSizeZ_.push_back(conf.filter_size_z());
    imgSizeD_.push_back(conf.img_size_z());
    outputD_.push_back(conf.output_z());
C
chengduoZH 已提交
53 54
    filterPixels_.push_back(filterSize_.back() * filterSizeY_.back() *
                            filterSizeZ_.back());
Z
zhangjinchao01 已提交
55 56
  }

57 58
  CHECK(inputLayers_.size() == parameters_.size());

C
chengduoZH 已提交
59 60
  // create new weights_ in derived class
  // create new biases_ in derived class
Z
zhangjinchao01 已提交
61 62 63 64 65 66 67

  // default caffe model
  caffeMode_ = true;

  return true;
}

68 69 70 71 72 73 74 75 76 77
size_t ConvBaseLayer::calOutputSize() {
  auto clearAndReserve = [this](IntV* vec) {
    vec->clear();
    vec->reserve(this->inputLayers_.size());
  };
  clearAndReserve(&imgSizeH_);
  clearAndReserve(&imgSizeW_);
  clearAndReserve(&outputH_);
  clearAndReserve(&outputW_);
  size_t layerSize = 0;
78

79
  auto setLayerSize = [&](IntV& inH, IntV& inW, IntV& outH, IntV& outW) {
80
    for (size_t i = 0; i < inputLayers_.size(); i++) {
81 82
      inH.push_back(inputLayers_[i]->getOutput().getFrameHeight());
      inW.push_back(inputLayers_[i]->getOutput().getFrameWidth());
L
Luo Tao 已提交
83
      const ConvConfig& conf = config_.inputs(i).conv_conf();
84
      if (isDeconv_) {
L
Luo Tao 已提交
85 86 87
        if (inH[i] == 0)
          inH[i] = conf.has_output_y() ? conf.output_y() : conf.output_x();
        if (inW[i] == 0) inW[i] = conf.output_x();
88 89 90 91 92
        outH.push_back(imageSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(imageSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      } else {
L
Luo Tao 已提交
93 94 95
        if (inH[i] == 0)
          inH[i] = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
        if (inW[i] == 0) inW[i] = conf.img_size();
96 97 98 99 100 101 102
        outH.push_back(outputSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(outputSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      }
      CHECK_EQ(outH[i], outH[0]);
      CHECK_EQ(outW[i], outW[0]);
103
    }
104 105 106 107 108
    getOutput().setFrameHeight(outH[0]);
    getOutput().setFrameWidth(outW[0]);
    layerSize = outH[0] * outW[0] * size_t(numFilters_);
  };

109
  setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_);
110

111
  return layerSize;
112 113
}

Z
zhangjinchao01 已提交
114
}  // namespace paddle