roll_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <vector>
S
sunli 已提交
17

C
chenenquan 已提交
18 19
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
C
chenenquan 已提交
21 22 23 24
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace operators {

class RollOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class RollGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
46 47
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")),
                      true,
48 49
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
50 51
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")),
                      true,
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class RollOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) the input tensor.");
    AddOutput("Out", "(Tensor), the output tensor.");
    AddAttr<std::vector<int64_t>>("shifts",
                                  "The number of places by which the elements "
                                  "of the tensor are shifted.")
        .SetDefault({});
76 77 78 79
    AddInput("ShiftsTensor",
             "The number of places by which the elements of the tensor "
             "are shifted.")
        .AsDispensable();
80
    AddAttr<std::vector<int64_t>>(
Y
yaoxuefeng 已提交
81
        "axis",
82
        "Axis along which to roll. It must have the same size "
S
sunli 已提交
83
        "with shifts or size == 0")
84 85
        .SetDefault({});
    AddComment(R"DOC(
86
    Roll the tensor along the given dimension(s).
87 88
    Elements that are shifted beyond the last position
    are re-introduced at the first position. If a dimension
89
    is not specified, the tensor will be flattened before
90 91 92 93 94 95 96 97 98 99 100 101 102 103
    rolling and then restored to the original shape.
    )DOC");
  }
};

template <typename T>
class RollGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("roll_grad");
    op->SetInput("X", this->Input("X"));
104 105 106
    if (this->HasInput("ShiftsTensor")) {
      op->SetInput("ShiftsTensor", this->Input("ShiftsTensor"));
    }
107 108 109 110 111 112
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

113
DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInferer, "X");
114 115 116 117
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
118 119
DECLARE_INFER_SHAPE_FUNCTOR(roll,
                            RollInferShapeFunctor,
C
chenenquan 已提交
120 121
                            PD_INFER_META(phi::RollInferMeta));

122 123 124
REGISTER_OPERATOR(roll,
                  ops::RollOp,
                  ops::RollOpMaker,
125
                  ops::RollGradMaker<paddle::framework::OpDesc>,
C
chenenquan 已提交
126 127
                  ops::RollGradMaker<paddle::imperative::OpBase>,
                  RollInferShapeFunctor);
128 129
REGISTER_OPERATOR(roll_grad,
                  ops::RollGradOp,
130
                  ops::RollGradNoNeedBufferVarsInferer);
131 132 133 134 135 136 137 138 139

REGISTER_OP_VERSION(roll)
    .AddCheckpoint(
        R"ROC(
      Upgrade roll add 1 attribute [axis], delete 1 attribute[dims].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("axis",
                     "(std::vector<int64_t>) Axis along which to roll. "
S
sunli 已提交
140
                     "It must have the same size with shifts, or size = 0.",
141
                     std::vector<int64_t>())
142 143 144 145 146 147 148 149 150
            .DeleteAttr("dims",
                        "(std::vector<int64_t>) Dims along which to roll. "
                        "It must have the same size with shifts, or size = 0."))
    .AddCheckpoint(
        R"ROC(Upgrade roll add a dispensable input "ShiftsTensor".)ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "ShiftsTensor",
            "The number of places by which the elements of"
            "the tensor are shifted."));