pooling.py 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.dygraph import layers
from ...fluid.layer_helper import LayerHelper
from .. import functional as F

__all__ = [
C
cnn 已提交
20 21 22 23 24 25 26 27 28 29 30 31
    'AvgPool1D',
    'AvgPool2D',
    'AvgPool3D',
    'MaxPool1D',
    'MaxPool2D',
    'MaxPool3D',
    'AdaptiveAvgPool1D',
    'AdaptiveAvgPool2D',
    'AdaptiveAvgPool3D',
    'AdaptiveMaxPool1D',
    'AdaptiveMaxPool2D',
    'AdaptiveMaxPool3D',
32 33 34
]


C
cnn 已提交
35
class AvgPool1D(layers.Layer):
36 37
    """
    This operation applies a 1D average pooling over an input signal composed
38
    of several input planes, based on the input, output_size, return_mask parameters.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:

    ..  math::

       Output(N_i, C_i, l) &= mean(Input[N_i, C_i, stride \times l:stride \times l+k])


    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
54
            it must contain an integer.
55
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
56 57 58 59 60 61 62 63
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
64
        exclusive (bool): Whether to exclude padding points in average pooling
65
                          mode, default is `True`.
66
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
67
            If it is set to False, the floor function will be used. The default value is False.
68 69 70 71 72 73 74 75 76 77 78
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        None.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
79
        ShapeError: If the input is not a 3-D tensor.
80 81 82
        ShapeError: If the output's shape calculated is not greater than 0.


83 84 85 86
    Shape:
        - inpuut: 3-D tensor.
        - output: 3-D tensor

87 88 89
    Examples:

        .. code-block:: python
90

91 92 93 94
          import paddle
          import paddle.nn as nn

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
95 96
          AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = AvgPool1D(data)
97 98 99 100 101 102 103 104
          # pool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
105
                 exclusive=True,
106 107
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
108
        super(AvgPool1D, self).__init__()
109 110 111 112
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
113
        self.exclusive = exclusive
114 115 116 117
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
118
                           self.exclusive, self.ceil_mode, self.name)
119 120 121
        return out


C
cnn 已提交
122
class AvgPool2D(layers.Layer):
123
    r"""
124 125 126 127
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
128

129 130 131 132 133
    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize
134

135 136 137 138 139 140
      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
           out(N_i, C_j, h, w)  = \frac{1}{ksize[0] * ksize[1]} \sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                               input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
           $$
141 142

    Args:
143 144 145
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
146
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
147 148 149 150 151 152 153 154 155 156 157
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
158
        exclusive (bool): Whether to exclude padding points in average pooling
159 160 161 162 163
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
164 165 166 167
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

168 169 170
    Shape:
        - x: 4-D tensor.
        - out: 2-D tensor
171

172
    Returns: None.
173 174 175 176 177 178
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
179

180 181
          import paddle
          import paddle.nn as nn
182
          import numpy as np
183

184 185
          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
186
          AvgPool2D = nn.AvgPool2D(kernel_size=2,
187 188 189
                                stride=2, padding=0)
          output = AvgPoo2d(input)
          # output.shape [1, 3, 16, 16]
190 191 192 193 194 195 196 197

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
198
                 exclusive=True,
199 200
                 divisor_override=None,
                 data_format="NCHW",
201
                 name=None):
C
cnn 已提交
202
        super(AvgPool2D, self).__init__()
203
        self.ksize = kernel_size
204 205 206
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
207
        self.exclusive = exclusive
208 209
        self.divisor = divisor_override
        self.data_format = data_format
210 211
        self.name = name

212 213 214 215 216 217 218
    def forward(self, x):
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
219
            exclusive=self.exclusive,
220 221 222
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
223 224


C
cnn 已提交
225
class AvgPool3D(layers.Layer):
226
    """
227 228 229 230
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
231 232

    Args:
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
248
        exclusive (bool): Whether to exclude padding points in average pooling
249 250 251 252 253
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
254 255 256 257
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

258
    Returns: None.
259
    Raises:
260 261 262 263 264 265 266
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.
267 268 269

    Examples:
        .. code-block:: python
270

271 272
          import paddle
          import paddle.nn as nn
273
          import numpy as np
274

275 276
          # avg pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
277
          AvgPool3D = nn.AvgPool3D(kernel_size=2,
278
                                   stride=2, padding=0)
C
cnn 已提交
279
          output = AvgPool3D(input)
280 281
          # output.shape [1, 2, 3, 16, 16]

282 283
    """

284 285 286 287 288
    def __init__(self,
                 kernel_size,
                 stride,
                 padding=0,
                 ceil_mode=False,
289
                 exclusive=True,
290 291 292
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
293
        super(AvgPool3D, self).__init__()
294 295 296 297
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
298
        self.exclusive = exclusive
299 300
        self.divisor = divisor_override
        self.data_format = data_format
301 302
        self.name = name

303 304 305 306 307 308 309
    def forward(self, x):
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
310
            exclusive=self.exclusive,
311 312 313
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
314 315


C
cnn 已提交
316
class MaxPool1D(layers.Layer):
317
    """
318
    Applies a 1D max pooling over an input signal composed of several input planes based
319
    on the input, output_size, return_mask parameters.
320 321 322
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.

323 324 325
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
326 327 328

    ..  math::

329
       Output(N_i, C_i, l) &=  max(Input[N_i, C_i, stride \times l:stride \times l+k])}
330 331

    Args:
332 333 334 335 336 337 338 339 340 341 342
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
343
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
344 345
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
346 347 348 349 350 351 352
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
353 354 355 356 357 358 359 360 361 362
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.
363 364

    Examples:
365

366 367
        .. code-block:: python

368
          import paddle
369 370 371
          import paddle.nn as nn

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
372 373
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = MaxPool1D(data)
374 375
          # pool_out shape: [1, 3, 16]

376
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
377
          pool_out, indices = MaxPool1D(data)
378 379 380 381
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

382 383 384 385
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
386
                 return_mask=False,
387 388
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
389
        super(MaxPool1D, self).__init__()
390 391 392 393
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
394
        self.return_mask = return_mask
395 396 397
        self.name = name

    def forward(self, input):
398
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
399
                           self.return_mask, self.ceil_mode, self.name)
400
        return out
401 402


C
cnn 已提交
403
class MaxPool2D(layers.Layer):
404
    r"""
405
    This operation applies 2D max pooling over input feature based on the input,
406 407 408 409 410 411 412 413 414 415 416 417 418
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize

      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
419 420 421
           out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1} \\
                                    & \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
                                                   \text{stride[1]} \times w + n)
422 423 424 425 426 427 428 429
           $$

    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
430 431 432 433 434 435 436 437
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
438
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
439
        return_mask (bool): Whether to return the max indices along with the outputs.
440 441 442
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
443 444 445
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
446

447
    Returns: None
448 449 450 451
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
452 453 454 455 456

    Shape:
        - x: 4-D tensor.
        - out: 4-D tensor.

457 458
    Examples:
        .. code-block:: python
459

460 461 462 463 464 465
          import paddle
          import paddle.nn as nn
          import numpy as np

          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
466
          MaxPool2D = nn.MaxPool2D(kernel_size=2,
467
                                   stride=2, padding=0)
C
cnn 已提交
468
          output = MaxPool2D(input)
469 470
          # output.shape [1, 3, 16, 16]

471 472
          # for return_mask=True
          MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
473
          output, max_indices = MaxPool2D(input)
474
          # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
475 476 477 478 479 480
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
481
                 return_mask=False,
482 483 484
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
C
cnn 已提交
485
        super(MaxPool2D, self).__init__()
486 487 488
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
489
        self.return_mask = return_mask
490 491 492 493 494
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
495
        return F.max_pool2d(
496 497 498 499
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
500
            return_mask=self.return_mask,
D
Double_V 已提交
501
            ceil_mode=self.ceil_mode,
502 503 504 505
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
506
class MaxPool3D(layers.Layer):
507
    """
508
    This operation applies 3D max pooling over input features based on the input,
509
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
510 511
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
512 513

    Args:
514
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
515
            is a tuple or list, it must contain three integers,
516
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
517
            Otherwise, the pool kernel size will be the cube of an int.
518 519 520 521 522 523 524 525 526 527 528
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
529
        return_mask (bool): Whether to return the max indices along with the outputs.
530 531 532
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
533 534 535 536 537 538 539 540 541 542
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:None.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
543 544 545 546 547

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.

548 549
    Examples:
        .. code-block:: python
550

551 552 553 554 555 556
          import paddle
          import paddle.nn as nn
          import numpy as np

          # max pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
557
          MaxPool3D = nn.MaxPool3D(kernel_size=2,
558
                                   stride=2, padding=0)
C
cnn 已提交
559
          output = MaxPool3D(input)
560 561
          # output.shape [1, 2, 3, 16, 16]

562 563
          # for return_mask=True
          MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
564
          output, max_indices = MaxPool3D(input)
565 566 567 568 569 570 571
          # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
    """

    def __init__(self,
                 kernel_size,
                 stride,
                 padding,
572
                 return_mask=False,
573 574 575
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
576
        super(MaxPool3D, self).__init__()
577 578 579
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
580
        self.return_mask = return_mask
581 582 583 584 585 586 587 588 589 590
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
591
            return_mask=self.return_mask,
D
Double_V 已提交
592
            ceil_mode=self.ceil_mode,
593 594 595 596
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
597
class AdaptiveAvgPool1D(layers.Layer):
598
    r"""
599 600

    This operation applies a 1D adaptive average pooling over an input signal composed
601
    of several input planes, based on the input, output_size, return_mask parameters.
602 603 604 605 606 607 608 609 610 611 612 613 614
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For average adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

       Output(i) &= \\frac{sum(Input[lstart:lend])}{(lstart - lend)}
615 616

    Args:
617
        output_size (int): The target output size. It must be an integer.
618 619 620 621
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

622 623 624
    Returns:
        None.

625
    Raises:
626
        ValueError: 'output_size' should be an integer.
627 628 629 630 631

    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.

632 633
    Examples:
        .. code-block:: python
634 635 636 637 638 639 640 641 642 643 644 645 646

          # average adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
          #
647 648 649
          import paddle
          import paddle.nn as nn

650
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
651 652
          AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
          pool_out = AdaptiveAvgPool1D(data)
653
          # pool_out shape: [1, 3, 16]
654 655
    """

656
    def __init__(self, output_size, name=None):
C
cnn 已提交
657
        super(AdaptiveAvgPool1D, self).__init__()
658
        self.output_size = output_size
659 660
        self.name = name

661 662 663 664
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)


C
cnn 已提交
665
class AdaptiveAvgPool2D(layers.Layer):
666
    r"""
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Shape:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
702
        A callable object of AdaptiveAvgPool2D.
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
724

725 726 727
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
728
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
729 730 731 732 733
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
734
        super(AdaptiveAvgPool2D, self).__init__()
735 736 737 738 739 740 741 742 743 744 745 746
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
747
class AdaptiveAvgPool3D(layers.Layer):
748
    r"""
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
787
        A callable object of AdaptiveAvgPool3D.
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
812

813 814 815
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
816
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
817 818 819 820 821
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
822
        super(AdaptiveAvgPool3D, self).__init__()
823 824 825 826 827 828 829 830 831 832 833 834
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
835
class AdaptiveMaxPool1D(layers.Layer):
836 837 838
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
839
    of several input planes, based on the input, output_size, return_mask parameters.
840 841 842 843 844 845 846 847 848 849 850 851
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

D
Double_V 已提交
852
       Output(i) &= max(Input[lstart:lend])
853 854 855 856

    Args:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
             it must contain one int.
857
        return_mask (bool): If true, the index of max pooling point will be returned along
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
        x (Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type is same as input x.

    Examples:
        .. code-block:: python

          # max adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = max(input[:, :, lstart: lend])
          #
                    import paddle
          import paddle.nn as nn

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
891 892
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
          pool_out = AdaptiveMaxPool1D(data)
893 894
          # pool_out shape: [1, 3, 16]

895 896
          # for return_mask = true
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
C
cnn 已提交
897
          pool_out, indices = AdaptiveMaxPool1D(data)
898 899 900 901
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

902
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
903
        super(AdaptiveMaxPool1D, self).__init__()
904
        self.output_size = output_size
905
        self.return_mask = return_mask
906 907 908
        self.name = name

    def forward(self, input):
909 910
        return F.adaptive_max_pool1d(input, self.output_size, self.return_mask,
                                     self.name)
911 912


C
cnn 已提交
913
class AdaptiveMaxPool2D(layers.Layer):
914 915 916
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
917

918
    For adaptive max pool2d:
919

920
    ..  math::
921

922
       hstart &= floor(i * H_{in} / H_{out})
923

924
       hend &= ceil((i + 1) * H_{in} / H_{out})
925

926
       wstart &= floor(j * W_{in} / W_{out})
927

928
       wend &= ceil((j + 1) * W_{in} / W_{out})
929

930
       Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
931

932 933
    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
934
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False.
935 936 937 938 939 940
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
D
Double_V 已提交
941

942
    Returns:
C
cnn 已提交
943
        A callable object of AdaptiveMaxPool2D.
944 945
    Examples:
        .. code-block:: python
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
964

965 966
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
967
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
968 969 970
            pool_out, indices = adaptive_max_pool(x = x)
    """

971
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
972
        super(AdaptiveMaxPool2D, self).__init__()
973
        self._output_size = output_size
974
        self._return_mask = return_mask
975 976 977 978 979 980
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
981
            return_mask=self._return_mask,
982 983 984
            name=self._name)


C
cnn 已提交
985
class AdaptiveMaxPool3D(layers.Layer):
986
    """
987
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions
988
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
989

990
    For adaptive max pool3d:
991

992
    ..  math::
993

994
      dstart &= floor(i * D_{in} / D_{out})
995

996
      dend &= ceil((i + 1) * D_{in} / D_{out})
997

998
      hstart &= floor(j * H_{in} / H_{out})
999

1000
      hend &= ceil((j + 1) * H_{in} / H_{out})
1001

1002
      wstart &= floor(k * W_{in} / W_{out})
1003

1004
      wend &= ceil((k + 1) * W_{in} / W_{out})
1005

1006
      Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1007

1008
    Parameters:
1009
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1010
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1011 1012 1013 1014 1015 1016 1017
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type is same as input x.
    Returns:
C
cnn 已提交
1018
        A callable object of AdaptiveMaxPool3D.
1019 1020
    Examples:
        .. code-block:: python
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1042

1043 1044
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1045
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1046 1047
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1048
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1049
            out, indices = pool(x)
1050
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1051

1052 1053
    """

1054
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1055
        super(AdaptiveMaxPool3D, self).__init__()
1056
        self._output_size = output_size
1057
        self._return_mask = return_mask
1058 1059 1060 1061 1062 1063
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
1064
            return_mask=self._return_mask,
1065
            name=self._name)