test_sparse_utils_op.py 20.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
Z
zhangkaihuo 已提交
19
from paddle.incubate import sparse
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22 23
from paddle.fluid.framework import _test_eager_guard

24 25
devices = ['cpu', 'gpu']

26

27
class TestSparseCreate(unittest.TestCase):
28

29
    def test_create_coo_by_tensor(self):
30
        with _test_eager_guard():
31 32
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1, 2, 3, 4, 5]
33
            dense_shape = [3, 4]
34 35
            dense_indices = paddle.to_tensor(indices)
            dense_elements = paddle.to_tensor(values, dtype='float32')
36 37 38 39
            coo = paddle.incubate.sparse.sparse_coo_tensor(dense_indices,
                                                           dense_elements,
                                                           dense_shape,
                                                           stop_gradient=False)
40 41
            # test the to_string.py
            print(coo)
42 43
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
44

45 46 47 48
    def test_create_coo_by_np(self):
        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
49
            dense_shape = [3, 3]
50 51
            coo = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape)
52 53
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
54

55
    def test_create_csr_by_tensor(self):
56
        with _test_eager_guard():
57 58 59
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
60
            dense_shape = [3, 4]
61 62 63
            dense_crows = paddle.to_tensor(crows)
            dense_cols = paddle.to_tensor(cols)
            dense_elements = paddle.to_tensor(values, dtype='float32')
64
            stop_gradient = False
65
            csr = paddle.incubate.sparse.sparse_csr_tensor(
66 67 68 69 70
                dense_crows,
                dense_cols,
                dense_elements,
                dense_shape,
                stop_gradient=stop_gradient)
71

72 73 74 75 76 77
    def test_create_csr_by_np(self):
        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
78 79
            csr = paddle.incubate.sparse.sparse_csr_tensor(
                crows, cols, values, dense_shape)
80 81
            # test the to_string.py
            print(csr)
82 83 84
            assert np.array_equal(crows, csr.crows().numpy())
            assert np.array_equal(cols, csr.cols().numpy())
            assert np.array_equal(values, csr.values().numpy())
85 86 87 88 89 90 91

    def test_place(self):
        with _test_eager_guard():
            place = core.CPUPlace()
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
92 93 94 95
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           place=place)
96
            assert coo.place.is_cpu_place()
97 98
            assert coo.values().place.is_cpu_place()
            assert coo.indices().place.is_cpu_place()
99 100 101 102

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
103 104 105 106
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           place=place)
107
            assert csr.place.is_cpu_place()
108 109 110
            assert csr.crows().place.is_cpu_place()
            assert csr.cols().place.is_cpu_place()
            assert csr.values().place.is_cpu_place()
111 112 113 114 115 116 117 118

    def test_dtype(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
119 120 121 122
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           dtype='float64')
123 124 125 126 127
            assert coo.dtype == paddle.float64

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
128 129 130 131
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           dtype='float16')
132 133 134 135 136 137 138 139
            assert csr.dtype == paddle.float16

    def test_create_coo_no_shape(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
140
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values)
141 142 143 144
            assert [2, 2] == coo.shape


class TestSparseConvert(unittest.TestCase):
145

146 147 148
    def test_to_sparse_coo(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
149 150 151
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
152
            out = dense_x.to_sparse_coo(2)
153 154 155 156 157
            assert np.array_equal(out.indices().numpy(), indices)
            assert np.array_equal(out.values().numpy(), values)
            #test to_sparse_coo_grad backward
            out_grad_indices = [[0, 1], [0, 1]]
            out_grad_values = [2.0, 3.0]
158
            out_grad = paddle.incubate.sparse.sparse_coo_tensor(
159
                paddle.to_tensor(out_grad_indices),
160 161 162
                paddle.to_tensor(out_grad_values),
                shape=out.shape,
                stop_gradient=True)
163 164 165 166 167
            out.backward(out_grad)
            assert np.array_equal(dense_x.grad.numpy(),
                                  out_grad.to_dense().numpy())

    def test_coo_to_dense(self):
168
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
169 170 171
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            indices_dtypes = ['int32', 'int64']
            for indices_dtype in indices_dtypes:
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor = sparse_x.to_dense()
                #test to_dense_grad backward
                out_grad = [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                            [9.0, 10.0, 11.0, 12.0]]
                dense_tensor.backward(paddle.to_tensor(out_grad))
                #mask the out_grad by sparse_x.indices()
                correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
                assert np.array_equal(correct_x_grad,
                                      sparse_x.grad.values().numpy())

                paddle.device.set_device("cpu")
                sparse_x_cpu = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor_cpu = sparse_x_cpu.to_dense()
                dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
                assert np.array_equal(correct_x_grad,
                                      sparse_x_cpu.grad.values().numpy())
199
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
200

201 202 203
    def test_to_sparse_csr(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
204 205 206
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
207
            dense_x = paddle.to_tensor(x)
208
            out = dense_x.to_sparse_csr()
209 210 211
            assert np.array_equal(out.crows().numpy(), crows)
            assert np.array_equal(out.cols().numpy(), cols)
            assert np.array_equal(out.values().numpy(), values)
212

213
            dense_tensor = out.to_dense()
214 215
            assert np.array_equal(dense_tensor.numpy(), x)

216
    def test_coo_values_grad(self):
217
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
218 219 220
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
221
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
222
                paddle.to_tensor(indices),
223 224 225
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
226 227 228 229 230
            values_tensor = sparse_x.values()
            out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
231 232 233
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
                      [5.0, 5.0]]
234
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
235 236 237 238 239 240 241 242 243 244
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4, 2],
                stop_gradient=False)
            values_tensor = sparse_x.values()
            out_grad = [[2.0, 2.0], [3.0, 3.0], [5.0, 5.0], [8.0, 8.0],
                        [9.0, 9.0]]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
245
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
246

247 248
    def test_sparse_coo_tensor_grad(self):
        with _test_eager_guard():
249
            for device in devices:
250 251
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
252 253 254 255
                    paddle.device.set_device(device)
                    indices = [[0, 1], [0, 1]]
                    values = [1, 2]
                    indices = paddle.to_tensor(indices, dtype='int32')
256 257 258
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
259
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
260 261 262 263 264
                        indices, values, shape=[2, 2], stop_gradient=False)
                    grad_indices = [[0, 1], [1, 1]]
                    grad_values = [2, 3]
                    grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
265
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
266 267 268 269 270
                        grad_indices, grad_values, shape=[2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [0, 3]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())
271

272 273
                    # test the non-zero values is a vector
                    values = [[1, 1], [2, 2]]
274 275 276
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
277
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
278 279 280
                        indices, values, shape=[2, 2, 2], stop_gradient=False)
                    grad_values = [[2, 2], [3, 3]]
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
281
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
282 283 284 285 286 287
                        grad_indices, grad_values, shape=[2, 2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [[0, 0], [3, 3]]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())

288 289 290
    def test_sparse_coo_tensor_sorted(self):
        with _test_eager_guard():
            for device in devices:
291 292
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
293
                    paddle.device.set_device(device)
294
                    #test unsorted and duplicate indices
295 296 297 298
                    indices = [[1, 0, 0], [0, 1, 1]]
                    values = [1.0, 2.0, 3.0]
                    indices = paddle.to_tensor(indices, dtype='int32')
                    values = paddle.to_tensor(values, dtype='float32')
299 300
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
301 302 303 304 305 306 307
                    indices_sorted = [[0, 1], [1, 0]]
                    values_sorted = [5.0, 1.0]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

308 309 310
                    # test the non-zero values is a vector
                    values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                    values = paddle.to_tensor(values, dtype='float32')
311 312
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
313 314 315 316 317 318
                    values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

Z
zhangkaihuo 已提交
319 320
    def test_batch_csr(self):
        with _test_eager_guard():
Z
zhangkaihuo 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

            def verify(dense_x):
                sparse_x = dense_x.to_sparse_csr()
                out = sparse_x.to_dense()
                assert np.allclose(out.numpy(), dense_x.numpy())

            shape = np.random.randint(low=1, high=10, size=3)
            shape = list(shape)
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

            #test batchs=1
            shape[0] = 1
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

            shape = np.random.randint(low=2, high=10, size=3)
            shape = list(shape)
            dense_x = paddle.randn(shape)
            #set the 0th batch to zero
            dense_x[0] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 1th batch to zero
            dense_x[1] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 2th batch to zero
            dense_x[2] = 0
            verify(dense_x)
Z
zhangkaihuo 已提交
355

356 357

class TestCooError(unittest.TestCase):
358

359 360 361 362 363 364 365
    def test_small_shape(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[2, 3], [0, 2]]
                values = [1, 2]
                # 1. the shape too small
                dense_shape = [2, 2]
366
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
367 368 369 370 371 372 373 374
                    indices, values, shape=dense_shape)

    def test_same_nnz(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                # 2. test the nnz of indices must same as nnz of values
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
375 376
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
377 378 379 380 381 382 383

    def test_same_dimensions(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
                shape = [2, 3, 4]
384 385 386
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                                    values,
                                                                    shape=shape)
387 388 389 390 391 392

    def test_indices_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                indices = [[1.0, 2.0], [0, 1]]
                values = [1, 2]
393 394
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
395 396 397


class TestCsrError(unittest.TestCase):
398

399 400 401 402 403 404 405
    def test_dimension1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
406 407
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
408 409 410 411 412 413 414 415

    def test_dimension2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 3, 3, 3]
416 417
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
418 419 420 421 422 423 424 425

    def test_same_shape1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3]
                shape = [3, 4]
426 427
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
428

429 430 431 432 433 434 435
    def test_same_shape2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3, 4]
                shape = [3, 4]
436 437
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
438 439 440 441 442 443 444 445

    def test_same_shape3(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3, 0, 1, 2]
                cols = [0, 1, 2, 3, 0, 1, 2]
                values = [1, 2, 3, 4, 0, 1, 2]
                shape = [2, 3, 4]
446 447
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
448 449 450 451 452 453 454 455

    def test_crows_first_value(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [1, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 4]
456 457
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
458 459 460 461 462 463 464 465

    def test_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                crows = [0, 1, 2, 3.0]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
466 467
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
468

469 470 471

if __name__ == "__main__":
    unittest.main()