expand_v2_mkldnn_op.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

J
jakpiase 已提交
15
#include "paddle/fluid/operators/expand_v2_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace {

using paddle::framework::Tensor;
using paddle::framework::vectorize;
using paddle::framework::GradVarName;
using paddle::framework::ExecutionContext;
using paddle::platform::MKLDNNDeviceContext;

template <typename T>
class ExpandMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_vec_dims = vectorize(x->dims());
J
jakpiase 已提交
41 42 43 44 45

    auto out_new_dims = paddle::operators::get_expand_shape(ctx);
    for (size_t i = 0; i < out_new_dims.size(); ++i) {
      out_new_dims[i] = out_new_dims[i] > 0 ? out_new_dims[i] : x_vec_dims[i];
    }
46 47

    dnnl::memory::format_tag x_format_tag = x->format();
J
jakpiase 已提交
48
    if (x_vec_dims.size() != out_new_dims.size()) {
49
      x_format_tag =
J
jakpiase 已提交
50
          GetExtendedFormatTag(x_vec_dims, out_new_dims.size(), x_format_tag);
51 52
    }

J
jakpiase 已提交
53
    out->Resize(paddle::framework::make_ddim(out_new_dims));
54 55
    out->set_format(x_format_tag);
    paddle::platform::BroadcastDataMKLDNNHandler<T> handler(
56 57
        dnnl::algorithm::binary_add, onednn_engine, ctx.GetPlace(), out, x,
        0.0f, 1.0f, x_vec_dims);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    auto src_memory_p = handler.AcquireSrcMemory(x);
    auto dst_memory_p = handler.AcquireDstMemory(out);
    auto binary_p = handler.AcquireForwardPrimitive();

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *dst_memory_p},
        {DNNL_ARG_SRC_1, *src_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    binary_p->execute(astream, args);
    astream.wait();

    out->set_layout(paddle::framework::DataLayout::kMKLDNN);
    out->set_format(paddle::platform::GetMKLDNNFormat(*dst_memory_p));
  }

 private:
  dnnl::memory::format_tag GetExtendedFormatTag(
      std::vector<int64_t>& dims, int new_size,
      mkldnn::memory::format_tag format_tag) const {
    mkldnn::memory::desc md(dims, paddle::platform::MKLDNNGetDataType<T>(),
                            format_tag);
    std::vector<int64_t> new_dims(new_size, 1);
    std::copy(dims.begin(), dims.end(),
              new_dims.begin() + new_size - dims.size());

    dims = std::move(new_dims);
    return paddle::platform::GetMKLDNNFormat(md.reshape(dims));
  }
};

template <typename T>
class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));

    auto dx_vec_dims = vectorize(dx->dims());
    auto dout_vec_dims = vectorize(dout->dims());

    if (dx_vec_dims.size() != dout_vec_dims.size()) {
      dx_vec_dims.insert(dx_vec_dims.begin(),
                         dout_vec_dims.size() - dx_vec_dims.size(), 1);
    }

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    if (dout_vec_dims == dx_vec_dims) {
      mkldnn::memory::data_type dout_type =
          paddle::framework::ToMKLDNNDataType(dout->type());
      std::string key = paddle::platform::CreateKey(
          dev_ctx, dout_vec_dims, dout->format(), dout->format(), dout_type);
      paddle::platform::ReorderMKLDNNHandler reorder_handler(
          dout_vec_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);

      auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
          dout->format(), paddle::platform::to_void_cast(dout->data<T>()));

      auto reorder_dst_memory_p =
          reorder_handler.AcquireDstMemory(dx, dout->format(), ctx.GetPlace());

      auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                      reorder_dst_memory_p);

      reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
      astream.wait();

      dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
      dx->set_format(
          paddle::platform::GetMKLDNNFormat(reorder_dst_memory_p->get_desc()));
    } else {
      paddle::platform::ReductionMKLDNNHandler<T> handler(
139 140
          dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
          ctx.GetPlace(), dout, dx, dx_vec_dims);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

      auto src_memory_p = handler.AcquireSrcMemory(dout);
      auto dst_memory_p = handler.AcquireDstMemory(dx);

      std::unordered_map<int, dnnl::memory> reduction_args = {
          {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};

      auto reduction_p = handler.AcquireForwardPrimitive();

      reduction_p->execute(astream, reduction_args);
      astream.wait();
      dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
      dx->set_format(paddle::platform::GetMKLDNNFormat(
          dst_memory_p->get_desc().reshape(vectorize<int64_t>(dx->dims()))));
    }
  }
};
}  // anonymous namespace

REGISTER_OP_KERNEL(expand_v2, MKLDNN, paddle::platform::CPUPlace,
                   ExpandMKLDNNKernel<float>,
                   ExpandMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(expand_v2_grad, MKLDNN, paddle::platform::CPUPlace,
                   ExpandGradMKLDNNKernel<float>,
                   ExpandGradMKLDNNKernel<paddle::platform::bfloat16>);