unstack_op.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#include "paddle/fluid/operators/unstack_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

class UnStackOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must exist.");

    int axis = ctx->Attrs().Get<int>("axis");
    int num = ctx->Attrs().Get<int>("num");
    auto x_dim = ctx->GetInputDim("X");
    int rank = x_dim.size();
    PADDLE_ENFORCE_GE(
        axis, -rank, "Attr(axis) must be inside [-rank, rank), where rank = %d",
        rank);
    PADDLE_ENFORCE_LT(
        axis, rank, "Attr(axis) must be inside [-rank, rank), where rank = %d",
        rank);
    if (axis < 0) axis += rank;

    PADDLE_ENFORCE_EQ(ctx->Outputs("Y").size(), static_cast<size_t>(num),
                      "Number of Outputs(Y) is wrong");
    if (x_dim[axis] > 0) {
      PADDLE_ENFORCE_EQ(num, x_dim[axis], "Number of Outputs(Y) is wrong");
    }
    auto vec = framework::vectorize<int>(x_dim);
    vec.erase(vec.begin() + axis);
    ctx->SetOutputsDim("Y", std::vector<framework::DDim>(  // NOLINT
                                x_dim[axis], framework::make_ddim(vec)));
  }
};

class UnStackOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input of unstack op.");
    AddOutput("Y", "The output of unstack op.").AsDuplicable();
    AddAttr<int>("axis", "The axis along which Input(X) should be unstacked.")
        .SetDefault(0);
    AddAttr<int>("num", "The number of outputs(Y).").GreaterThan(0);
    AddComment(R"DOC(
      UnStack Operator.

      UnStack Input(X) into several tensors along Attr(axis).
    )DOC");
  }
};

H
hong 已提交
72 73
template <typename T>
class UnStackGradOpMaker : public framework::SingleGradOpMaker<T> {
74
 public:
H
hong 已提交
75
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
76 77

 protected:
78
  void Apply(GradOpPtr<T> op) const override {
79
    op->SetType("unstack_grad");
H
hong 已提交
80 81 82
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  }
};

class UnStackGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Y")).size(), 0,
                      "Number of Inputs(Y@Grad) must be larger than 0");
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      "Output(X@Grad) must exist.");

    auto input_dims = ctx->GetInputsDim(framework::GradVarName("Y"));
    for (size_t i = 1; i < input_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
                        "Dims of all Inputs(Y@Grad) must be the same");
    }

    int axis = ctx->Attrs().Get<int>("axis");
    int rank = input_dims[0].size();
    PADDLE_ENFORCE_GE(
        axis, -(rank + 1),
        "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d", rank);
    PADDLE_ENFORCE_LT(
        axis, rank + 1,
        "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d", rank);
    if (axis < 0) axis += (rank + 1);

    auto vec = framework::vectorize<int>(input_dims[0]);
    vec.insert(vec.begin() + axis, input_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), framework::make_ddim(vec));
  }
};

}  // namespace operators
}  // namespace paddle
D
dzhwinter 已提交
120 121 122 123 124

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OPERATOR(unstack, ops::UnStackOp, ops::UnStackOpMaker,
H
hong 已提交
125 126
                  ops::UnStackGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnStackGradOpMaker<paddle::imperative::OpBase>);
127 128 129 130 131 132 133 134

REGISTER_OPERATOR(unstack_grad, ops::UnStackGradOp);

REGISTER_OP_CPU_KERNEL(unstack,
                       ops::UnStackKernel<plat::CPUDeviceContext, float>,
                       ops::UnStackKernel<plat::CPUDeviceContext, double>,
                       ops::UnStackKernel<plat::CPUDeviceContext, int>,
                       ops::UnStackKernel<plat::CPUDeviceContext, int64_t>);
D
dzhwinter 已提交
135

136 137 138 139 140
REGISTER_OP_CPU_KERNEL(unstack_grad,
                       ops::UnStackGradKernel<plat::CPUDeviceContext, float>,
                       ops::UnStackGradKernel<plat::CPUDeviceContext, double>,
                       ops::UnStackGradKernel<plat::CPUDeviceContext, int>,
                       ops::UnStackGradKernel<plat::CPUDeviceContext, int64_t>);