test_prroi_pool_op.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
from py_precise_roi_pool import PyPrRoIPool
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard


class TestPRROIPoolOp(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.prRoIPool = PyPrRoIPool()
        self.outs = self.prRoIPool.compute(
            self.x, self.rois, self.output_channels, self.spatial_scale,
            self.pooled_height, self.pooled_width).astype('float32')
        self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
        self.attrs = {
            'output_channels': self.output_channels,
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width
        }
        self.outputs = {'Out': self.outs}

    def init_test_case(self):
        self.batch_size = 3
        self.channels = 3 * 2 * 2
        self.height = 6
        self.width = 4

        self.x_dim = [self.batch_size, self.channels, self.height, self.width]

        self.spatial_scale = 1.0 / 4.0
        self.output_channels = 3
        self.pooled_height = 2
        self.pooled_width = 2

        self.x = np.random.random(self.x_dim).astype('float32')

    def make_rois(self):
        rois = []
        self.rois_lod = [[]]
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.random_integers(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.random_integers(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.random_integers(x1 + self.pooled_width,
                                               self.width // self.spatial_scale)
                y2 = np.random.random_integers(
                    y1 + self.pooled_height, self.height // self.spatial_scale)
                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
        self.rois = np.array(rois).astype('float32')

    def setUp(self):
        self.op_type = 'prroi_pool'
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_backward(self):
        for place in self._get_places():
            self._get_gradient(['X'], place, ["Out"], None)

    def run_net(self, place):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
                name="X",
                shape=[self.channels, self.height, self.width],
                dtype="float32")
            rois = fluid.layers.data(
                name="ROIs", shape=[4], dtype="float32", lod_level=1)
            output = fluid.layers.prroi_pool(x, rois, self.output_channels,
                                             0.25, 2, 2)
            loss = fluid.layers.mean(output)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)
            input_x = fluid.create_lod_tensor(self.x, [], place)
            input_rois = fluid.create_lod_tensor(self.rois[:, 1:5],
                                                 self.rois_lod, place)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            exe.run(fluid.default_main_program(),
                    {'X': input_x,
                     "ROIs": input_rois})

    def test_net(self):
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.run_net(place)

    def test_errors(self):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
                name="x", shape=[245, 30, 30], dtype="float32")
            rois = fluid.layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            # channel must be int type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.5,
                              0.25, 7, 7)
            # spatial_scale must be float type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 5, 2,
                              7, 7)
            # pooled_height must be int type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 5,
                              0.25, 0.7, 7)
            # pooled_width must be int type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 5,
                              0.25, 7, 0.7)


if __name__ == '__main__':
    unittest.main()