activation_op.h 75.8 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yihua Xu 已提交
29
#include "paddle/fluid/operators/math/blas.h"
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
32

33 34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
37 38 39
namespace paddle {
namespace operators {

40 41
using framework::To32BitIndex;

42 43 44 45 46 47
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out
};

C
chengduo 已提交
48 49 50 51 52 53
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

54 55 56 57 58
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
59 60 61 62 63 64 65 66
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound(
                   "Cannot get output Variable Out, variable name = %s",
                   context.OutputName("Out")));
H
hong 已提交
67
  if (CanBeUsedBySelectedRows.count(context.Type())) {
68 69 70 71 72 73 74 75
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

76 77 78 79
  PADDLE_ENFORCE_NOT_NULL(*Out, platform::errors::NotFound(
                                    "Cannot get the tensor from the Variable "
                                    "Output(Out), variable name = %s",
                                    context.OutputName("Out")));
80 81
}

82
template <ActBwdOpFwdDeps kDepValue>
83 84 85 86 87 88
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
89 90 91 92
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     context.InputName("Out")));
  }

  PADDLE_ENFORCE_NOT_NULL(
      out_grad_var, platform::errors::NotFound(
                        "Cannot get input Variable %s, variable name = %s",
                        framework::GradVarName("Out"),
                        context.InputName(framework::GradVarName("Out"))));
  PADDLE_ENFORCE_NOT_NULL(
      x_grad_var, platform::errors::NotFound(
                      "Cannot get output Variable %s, variable name = %s",
                      framework::GradVarName("X"),
                      context.OutputName(framework::GradVarName("X"))));
109

H
hong 已提交
110
  if (CanBeUsedBySelectedRows.count(context.Type())) {
111 112 113 114
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
115 116 117 118 119 120 121 122

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

123 124 125 126
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
127 128 129 130 131 132

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
133
  }
134

135 136 137 138 139
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
140

141
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
142
    auto x_var = context.InputVar("X");
143 144 145 146
    PADDLE_ENFORCE_NOT_NULL(x_var, platform::errors::NotFound(
                                       "Cannot get the tensor from the "
                                       "Variable Input(X), variable name = %s",
                                       context.InputName("X")));
H
hong 已提交
147
    if (CanBeUsedBySelectedRows.count(context.Type())) {
148
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
149
    } else {
150
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
151
    }
152
  } else {
H
hong 已提交
153
    VLOG(10) << " Inplace activation of Op : " << context.Type();
154 155 156
    *X = *dX;
  }
}
C
chengduo 已提交
157

158 159 160 161 162
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
163

164 165 166 167
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
168
    Out->mutable_data<T>(context.GetPlace());
169

170 171 172 173
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
174 175
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
176
    Functor functor;
177 178 179 180 181

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
182 183 184 185 186 187 188 189
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
190 191 192
  }
};

Q
QI JUN 已提交
193
template <typename DeviceContext, typename Functor>
194 195
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
196
 public:
197
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
198
  void Compute(const framework::ExecutionContext& context) const override {
199 200 201
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
202 203
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
204
    dX->mutable_data<T>(context.GetPlace());
205 206 207 208 209 210 211 212
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
213 214
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
215
    Functor functor;
216 217 218 219
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
220 221 222 223 224 225 226 227 228
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out), To32BitIndex(dout),
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
229 230 231
  }
};

232 233 234 235 236 237 238 239 240
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

241
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
242
template <typename T>
243
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
244 245 246
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
247 248 249
  }
};

250
template <typename T>
251
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
252 253 254 255
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
256
  }
257 258

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
259 260
};

261 262 263 264
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
265
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
266 267 268 269 270 271 272 273 274 275
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
276 277
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
278
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
279
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
280 281 282 283 284 285 286 287
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
288 289 290
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
291 292
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
293
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
294
  }
295 296

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
297 298
};

Q
qijun 已提交
299
// exp(x) = e^x
300 301
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
302 303 304
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
305 306 307
  }
};

308 309
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
310 311 312 313
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
314
  }
315 316

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
317 318
};

Q
qijun 已提交
319
// relu(x) = max(x, 0)
Q
qijun 已提交
320
template <typename T>
321 322 323 324 325 326 327 328 329 330 331
struct ReluCPUFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr([] HOSTDEVICE(T v) {
      return v > static_cast<T>(0) ? v : static_cast<T>(0);
    });
  }
};

template <typename T>
struct ReluCUDAFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
332 333 334
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
335 336
  }
};
Q
qijun 已提交
337

Q
qijun 已提交
338
template <typename T>
339
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
340 341 342
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
343
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
344
  }
345 346

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
347
};
Q
qijun 已提交
348

349
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
350 351
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
352 353 354
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
355 356 357 358
  }
};

template <typename T>
359
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
360 361 362 363
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
364
  }
365 366

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
367 368
};

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
template <typename T>
struct TanhGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "TanhGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "TanhGradGrad"));
    // tanh grad grad : ddout = (1 - out^2) * ddx, dout = - (dout_old * 2 * out
    // * ddx)
    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SquareGradGrad"));
      dout_new.device(*d) =
          static_cast<T>(-1) * dout * static_cast<T>(2) * out * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
      ddout.device(*d) = (static_cast<T>(1) - out * out) * ddx;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

K
Kavya Srinet 已提交
399 400 401 402
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
403 404 405
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
406 407 408 409 410
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
411 412 413 414
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
415
  }
416 417

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
418 419
};

420 421 422 423 424 425 426 427 428
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
429 430
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
431 432
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
433
    out.device(d) = x * (temp1 + temp2).template cast<T>();
434 435 436 437 438 439 440 441 442 443 444
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
445 446 447
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
448 449
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
450
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
451
  }
452 453

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
454 455
};

K
Kexin Zhao 已提交
456
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
457 458 459 460 461 462 463 464
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
465 466
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
467
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
468 469
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
470
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
471 472 473 474 475 476 477 478 479
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
480 481 482
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
483
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
484 485
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
486
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
487
  }
488 489

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
490 491
};

Q
qijun 已提交
492
// sqrt(x) = x^(1/2)
493 494
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
495 496 497
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
498 499 500 501
  }
};

template <typename T>
502
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
503 504 505
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
506
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
507
  }
508 509

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
510 511
};

Z
zhoukunsheng 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
526
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
527
  }
Z
zhoukunsheng 已提交
528 529

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
530 531
};

D
dzhwinter 已提交
532 533 534
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
535 536 537
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
538 539 540 541 542
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
543 544 545
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
546
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
547
  }
548 549

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
550 551 552 553 554
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
555 556
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
557
    out.device(d) = x.floor();
D
dzhwinter 已提交
558 559 560
  }
};

C
add cos  
chengduoZH 已提交
561 562 563 564 565
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

566 567 568 569 570 571 572
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
573 574 575 576 577
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

578 579 580 581 582 583 584
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
585 586 587 588 589 590 591 592
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
593 594

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
614 615

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
616 617 618 619 620 621 622 623 624 625 626
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

J
joejiong 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
template <typename T>
struct Tangent {
  HOSTDEVICE T operator()(const T& val) const { return tan(val); }
};

template <>
struct Tangent<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(tan(static_cast<float>(val)));
  }
};

// Tangent'(x) = -Tangent(x)
template <typename T>
struct TanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout / x.unaryExpr(Cosine<T>()).square();
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// Tangent(x) = tan(x)
template <typename T>
struct TanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Tangent<T>());
  }
};

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
template <typename T>
struct Sinh {
  HOSTDEVICE T operator()(const T& val) const { return sinh(val); }
};

template <>
struct Sinh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sinhf(static_cast<float>(val)));
  }
};

template <typename T>
struct Cosh {
  HOSTDEVICE T operator()(const T& val) const { return cosh(val); }
};

template <>
struct Cosh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(coshf(static_cast<float>(val)));
  }
};

// sinh(x) = sinh(x)
template <typename T>
struct SinhFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sinh<T>());
  }
};

// cosh(x) = cosh(x)
template <typename T>
struct CoshFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosh<T>());
  }
};

// sinh'(x) = cosh(x)
template <typename T>
struct SinhGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosh<T>());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// cosh'(x) = sinh(x)
template <typename T>
struct CoshGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Sinh<T>());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
756 757

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
790 791

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
823 824

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
825 826
};

D
dzhwinter 已提交
827 828 829
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
830 831 832
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
833 834 835
  }
};

Q
qijun 已提交
836 837
// reciprocal(x) = 1 / x
template <typename T>
838
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
839 840 841
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
842 843 844
  }
};

845
template <typename T>
846
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
847 848 849 850
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
851
  }
852 853

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
854 855 856
};

// log(x) = natural logarithm of x
857 858
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
859 860 861
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
862 863 864
  }
};

865
template <typename T>
866
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
867 868 869 870
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
871
  }
872 873

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
874 875
};

J
joejiong 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
// log2(x) = logarithm to the base 2 of the elements of x
template <typename T>
struct Log2Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(2));
  }
};

// the gradient of log2(x) is 1/(x*ln(2))
template <typename T>
struct Log2GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(2)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

J
joejiong 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
// log10(x) = logarithm to the base 10 of the elements of x
template <typename T>
struct Log10Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(10));
  }
};

// the gradient of log10(x) is 1/(x*ln(10))
template <typename T>
struct Log10GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(10)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
// log1p(x) = natural logarithm of x+1
template <typename T>
struct Log1pFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (static_cast<T>(1) + x).log();
  }
};

template <typename T>
struct Log1pGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / (x + static_cast<T>(1)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
938
// square(x) = x^2
939 940
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
941 942 943
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
944
  }
945
};
Q
qijun 已提交
946

947
template <typename T>
948
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
949 950 951 952
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
953
  }
954 955

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
956 957
};

958 959 960 961 962 963 964 965 966 967
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
968

F
fengjiayi 已提交
969 970 971
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
972
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
973 974 975
  }
};

976 977 978 979 980 981 982
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
983 984 985 986
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
987 988
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
989
  }
990 991

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
992 993
};

994 995 996 997 998 999 1000 1001 1002
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1003 1004 1005
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1006
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
1007 1008 1009 1010 1011 1012 1013 1014 1015
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1016 1017 1018
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
1019 1020 1021 1022
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
1023
  }
1024 1025

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1026 1027
};

H
huangjun12 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

1073 1074 1075 1076
// For numerical stability, using the following formula instead of softplus(x) =
// log(1 + exp(x))
// softplus(x) = log(1 + exp(beta * x)) / beta when beta * x <= threshold(beta =
// 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1077 1078
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
1079 1080 1081 1082 1083 1084
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1085 1086
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
1087 1088 1089 1090
    auto x_beta = static_cast<T>(beta) * x;
    out.device(d) = (x_beta > static_cast<T>(threshold))
                        .select(x, (static_cast<T>(1) + x_beta.exp()).log() /
                                       static_cast<T>(beta));
K
kexinzhao 已提交
1091 1092 1093
  }
};

1094 1095 1096 1097
// For numerical stability, using the following formula instead of
// d(softplus(x))/dx = 1 / (1 + exp(-x))
// d(softplus(x))/dx = 1 / (1 + exp(-beta * x)) when beta * x <= threshold(beta
// = 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1098 1099
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
1100 1101 1102 1103 1104 1105
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1106 1107 1108
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1109
    auto x_beta = static_cast<T>(beta) * x;
F
fengjiayi 已提交
1110
    dx.device(d) =
1111 1112
        (x_beta > static_cast<T>(threshold))
            .select(dout, dout / (static_cast<T>(1) + (-x_beta).exp()));
K
kexinzhao 已提交
1113
  }
1114 1115

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
1116 1117
};

1118 1119
// softsign(x) = x / (1 + |x|)
template <typename T>
1120
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1121 1122 1123
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
1124 1125 1126 1127 1128 1129
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
1130
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1131 1132 1133
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1134
    dx.device(d) =
F
fengjiayi 已提交
1135
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
1136
  }
1137 1138

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1139 1140
};

1141 1142 1143 1144 1145 1146
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
1147

F
fengjiayi 已提交
1148 1149
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1150 1151
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
1152
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
1153 1154 1155
  }
};

1156 1157 1158 1159 1160 1161
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1162 1163 1164
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1165
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
1166
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
1167
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
1168
  }
1169 1170

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1171 1172
};

K
Kavya Srinet 已提交
1173 1174 1175 1176 1177 1178
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1179

F
fengjiayi 已提交
1180 1181
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1182 1183 1184 1185 1186
    if (alpha < 1.f) {
      out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
    } else {
      out.device(d) = x.cwiseMin(static_cast<T>(alpha) * x);
    }
1187 1188 1189
  }
};

K
Kavya Srinet 已提交
1190 1191 1192 1193 1194 1195
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1196 1197 1198
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1199
    auto temp1 =
1200 1201
        static_cast<T>(alpha) * (x < static_cast<T>(0)).template cast<T>();
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1202
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1203
  }
1204

1205
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1206 1207
};

1208 1209 1210 1211 1212 1213
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1214

F
fengjiayi 已提交
1215 1216
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1217 1218 1219
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)), x);
1220 1221 1222
  }
};

1223 1224 1225 1226 1227 1228
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1229 1230 1231
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    auto temp_a_pos = static_cast<T>(alpha > 0);
    auto temp_a_neg = static_cast<T>(alpha <= 0);
    auto temp_x_pos = (x > static_cast<T>(0)).template cast<T>();
    auto temp_x_neg = (x <= static_cast<T>(0)).template cast<T>();

    // dx = dout, if alpha > 0 and x > 0
    // dx = dout * alpha * x.exp(), if alpha > 0 and x <= 0
    // dx = dout * (1 + alpha * x.exp()), if alpha <= 0 and x > 0
    // dx = 0, if alpha <= 0 and x <=0
    dx.device(d) =
        dout * temp_a_pos * temp_x_pos +
        dout * static_cast<T>(alpha) * x.exp() * temp_a_pos * temp_x_neg +
        dout * (static_cast<T>(1) + static_cast<T>(alpha) * x.exp()) *
            temp_a_neg * temp_x_pos;
1246
  }
1247 1248

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1249 1250
};

Q
QI JUN 已提交
1251
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1252 1253 1254 1255 1256 1257
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1258 1259 1260
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1261 1262 1263
  }
};

1264 1265 1266 1267 1268 1269
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1270 1271 1272 1273
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1274
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1275
  }
1276 1277

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1278 1279
};

1280 1281 1282 1283 1284 1285 1286
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1287

F
fengjiayi 已提交
1288 1289 1290
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1291
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1292 1293 1294
  }
};

1295 1296 1297 1298 1299 1300 1301
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1302

F
fengjiayi 已提交
1303 1304 1305
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1306 1307 1308
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1309
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1310
  }
1311 1312

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1313 1314
};

1315 1316 1317 1318 1319 1320 1321
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1322 1323
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1324
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1325
    out.device(d) = (x > th).template cast<T>() * x;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1336 1337 1338
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1339
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1340
    dx.device(d) = dout * (x > th).template cast<T>();
1341
  }
1342 1343

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1344 1345
};

1346 1347 1348 1349 1350 1351 1352 1353
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1354 1355
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1356
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1357 1358
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1369 1370 1371 1372 1373 1374 1375
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1376
  }
1377 1378

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1379 1380
};

A
Abhinav Arora 已提交
1381 1382 1383 1384 1385 1386 1387
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1388 1389 1390
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1401 1402
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1403
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1404
    auto temp1 = static_cast<T>(1) /
1405
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1406
    auto out = x * temp1;
D
dzhwinter 已提交
1407 1408
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1409
  }
1410 1411

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1412 1413
};

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1426 1427 1428 1429
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
H
hong 已提交
1430
  if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
1442 1443 1444 1445 1446
  PADDLE_ENFORCE_NOT_NULL(
      *ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable Output, variable name = %s",
          ctx.OutputName("DDX")));
1447 1448 1449

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
1450 1451
    PADDLE_ENFORCE_NOT_NULL(
        x_var, platform::errors::NotFound(
1452
                   "Cannot get input Variable Out, variable name = %s",
1453
                   ctx.InputName("X")));
1454
    auto dx_var = ctx.OutputVar("DX");
H
hong 已提交
1455
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
H
hong 已提交
1468
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1469 1470
    *X = *ddX;
  }
1471 1472
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
1473 1474 1475 1476 1477
    PADDLE_ENFORCE_NOT_NULL(
        out_var,
        platform::errors::NotFound(
            "Cannot get the tensor from the Variable Out, variable name = %s",
            ctx.InputName("Out")));
1478
    auto dout_var = ctx.OutputVar("DOut");
H
hong 已提交
1479
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
H
hong 已提交
1494
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1495 1496
    *Out = *ddX;
  }
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

Z
Zhong Hui 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
template <typename T>
struct AbsGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "AbsGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "AbsGradGrad"));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "AbsGradGrad"));
      ddout.device(*d) = ddx * x.sign();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

1549 1550 1551 1552 1553 1554 1555 1556
template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1557 1558 1559 1560
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ReluGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "ReluGradGrad"));
1561
    if (ddOut) {
1562 1563
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ReluGradGrad"));
1564 1565 1566 1567 1568 1569
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1582
      auto* d = dev.eigen_device();
1583 1584
      auto ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddX, "Input", "DDX", "LeakyReluGradGrad"));
1585 1586
      auto x = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(X, "Input", "X", "LeakyReluGradGrad"));
1587 1588
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DOut", "LeakyReluGradGrad"));
1589 1590 1591 1592 1593
      ddout.device(*d) =
          ddx *
          ((x > static_cast<T>(0)).template cast<T>() +
           static_cast<T>(alpha) * (x <= static_cast<T>(0)).template cast<T>())
              .template cast<T>();
1594 1595
    }
  }
1596
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1597 1598
};

D
Double_V 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
template <typename T>
struct ELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1610 1611 1612 1613
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ELUGradGrad"));
D
Double_V 已提交
1614 1615

    if (dX) {
1616 1617 1618 1619
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "ELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "ELUGradGrad"));
D
Double_V 已提交
1620
      dx.device(*d) = ddx * dout * static_cast<T>(alpha) * x.exp() *
1621
                      (x <= static_cast<T>(0)).template cast<T>();
D
Double_V 已提交
1622 1623 1624
    }

    if (ddOut) {
1625 1626
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ELUGradGrad"));
D
Double_V 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) * x.exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

L
lvmengsi 已提交
1637 1638 1639 1640 1641 1642 1643
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1644 1645 1646 1647
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "SqrtGradGrad"));
1648 1649
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1650
    if (dOut) {
1651 1652 1653 1654
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SqrtGradGrad"));
L
lvmengsi 已提交
1655 1656
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1657
    if (ddOut) {
1658 1659
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SqrtGradGrad"));
1660 1661
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1662 1663 1664 1665
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

W
whs 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
template <typename T>
struct RsqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "RsqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "RsqrtGradGrad"));

    // rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * dx * ddx
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "RsqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "RsqrtGradGrad"));
      dout.device(*d) = (static_cast<T>(3.0) / out) * dx * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "RsqrtGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(-0.5) * out * out * out;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1695 1696 1697 1698 1699 1700 1701
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1702 1703 1704 1705
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SquareGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "SquareGradGrad"));
1706 1707
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1708
    if (dX) {
1709 1710 1711 1712
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SquareGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SquareGradGrad"));
1713 1714
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1715
    if (ddOut) {
1716 1717
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
1718 1719
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1734 1735 1736 1737
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
1738 1739 1740 1741
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
1742 1743 1744 1745 1746
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
1747 1748 1749

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
1750 1751
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::NotFound(
1752
                 "Cannot get input Variable Out, variable name = %s",
1753
                 ctx.InputName("X")));
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
template <typename DeviceContext, typename Functor>
class TanhDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;

    // extract ddx(input) and out(input)
    auto ddx_var = ctx.InputVar("DDX");
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable ddx, variable name = %s",
                     ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable out, variable name = %s",
                     ctx.InputName("Out")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");

    // set output ddout
    auto ddout_var = ctx.OutputVar("DDOut");
    if (ddout_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }

    // extract dOut(intput)
    auto dout_var = ctx.InputVar("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dout_var, platform::errors::NotFound(
                      "Cannot get input Variable dout_var, variable name = %s",
                      ctx.InputName("DOut")));
    dOut = ctx.Input<framework::Tensor>("DOut");

    // set output dout_new
    auto dout_new_var = ctx.OutputVar("DOutNew");
    if (dout_new_var) {
      dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    }

    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
1832 1833
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
1834 1835 1836 1837 1838 1839 1840 1841

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

1842 1843 1844 1845
template <typename DeviceContext, typename Functor>
class LogDoubleGradKernel
    : public SquareDoubleGradKernel<DeviceContext, Functor> {};

D
Double_V 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
template <typename DeviceContext, typename Functor>
class ELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
template <typename DeviceContext, typename Functor>
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
1887 1888 1889 1890
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
L
lvmengsi 已提交
1891 1892 1893 1894
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
1895 1896 1897 1898
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));
L
lvmengsi 已提交
1899 1900 1901

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
1902 1903 1904 1905
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
L
lvmengsi 已提交
1906 1907 1908 1909 1910 1911 1912 1913
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
1914 1915 1916 1917
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
L
lvmengsi 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

W
whs 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename DeviceContext, typename Functor>
class RsqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

2004 2005 2006 2007
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Pow"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Pow"));
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2029 2030 2031 2032 2033
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
2054 2055 2056 2057 2058 2059 2060 2061
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "PowGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "PowGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "X@GRAD", "PowGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "PowGrad"));
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2084 2085 2086 2087 2088
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2089 2090 2091 2092 2093 2094 2095
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

template <typename T>
struct LogGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "LogGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "LogGradGrad"));
    // ddout = ddx / x; dx = -(dout / x) * (ddx / x)
    // calculate dx first, so ddout can inplace ddx
    if (dX) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "LogGradGrad"));
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "LogGradGrad"));
      dx.device(*d) = dout * static_cast<T>(-1) * ddx / (x * x);
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "LogGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(1) / x;
    }
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
2127 2128
}  // namespace operators
}  // namespace paddle
2129

2130 2131 2132 2133 2134 2135 2136 2137
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
  __macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
J
joejiong 已提交
2138
  __macro(tan, Tan, TanFunctor, TanGradFunctor);                              \
2139 2140 2141
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
2142 2143
  __macro(sinh, Sinh, SinhFunctor, SinhGradFunctor);                          \
  __macro(cosh, Cosh, CoshFunctor, CoshGradFunctor);                          \
2144 2145
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
2146
  __macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);                      \
J
joejiong 已提交
2147
  __macro(log2, Log2, Log2Functor, Log2GradFunctor);                          \
J
joejiong 已提交
2148
  __macro(log10, Log10, Log10Functor, Log10GradFunctor);                      \
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
2161 2162
          ThresholdedReluGradFunctor);                                        \
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);