framework.py 261.5 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
L
Ligoml 已提交
78
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Ligoml 已提交
87 88 89 90 91 92
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
93 94

# Some explanation of our execution system 2022.03
95
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
96
# build a fast execution system for dynamic mode. But we can't just remove all legacy
97
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
98
# these flags.
99
#
J
Jiabin Yang 已提交
100
# 1. _non_static_mode():
101
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
102 103 104 105
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
106
#
J
Jiabin Yang 已提交
107
# They have a relation ship as below:
108
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
109
# dygraph mode means you are not in _in_legacy_dygraph.
110
#
J
Jiabin Yang 已提交
111 112 113 114 115 116
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


117 118 119 120 121
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
122
    from paddle import _C_ops, _legacy_C_ops
123 124 125
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

126 127 128
    global _already_patch_eager_tensor
    global _already_patch_varbase

129
    assert isinstance(is_eager, bool)
130
    # switch into eager mode
131
    if is_eager:
132
        _legacy_C_ops.switch_to_eager_ops()
133 134 135 136 137 138
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
139
    else:
140
        _legacy_C_ops.switch_to_core_ops()
141 142 143 144 145
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
146

147 148 149 150 151 152
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
L
Ligoml 已提交
153

154 155 156 157 158
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
159 160


J
Jiabin Yang 已提交
161 162 163
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
164
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
165 166 167 168 169


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
170
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
171 172 173 174 175 176 177


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


178 179 180 181 182 183 184 185 186 187
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
L
Ligoml 已提交
188 189 190 191 192 193
    is_not_support = (
        core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
251 252 253


@signature_safe_contextmanager
J
Jiabin Yang 已提交
254
def _test_eager_guard(place=None):
255 256 257 258 259
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
260
    try:
J
Jiabin Yang 已提交
261
        yield
262
    finally:
263 264
        if not already_fallback:
            _enable_legacy_dygraph()
265 266


267 268
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
269 270 271 272
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
284
@signature_safe_contextmanager
285
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
286 287 288 289
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
290
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
291
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
292
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
L
Ligoml 已提交
293
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
294
            which means no pipelining computation order and run Ops in terms of graph.
L
Ligoml 已提交
295

L
Ligoml 已提交
296 297 298 299 300 301 302
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


337 338 339 340
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

L
Ligoml 已提交
341 342 343 344 345
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

346 347 348 349 350
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
L
Ligoml 已提交
351
            The sharded model will be computed from small to large. The default value is -1,
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
L
Ligoml 已提交
378

379 380 381 382 383
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
L
Ligoml 已提交
384 385
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
386 387 388 389 390 391 392 393 394 395 396 397

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


398 399
def require_version(min_version, max_version=None):
    """
L
Ligoml 已提交
400 401 402
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
403

L
Ligoml 已提交
404 405 406 407
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
408

L
Ligoml 已提交
409 410
    Returns:
        None.
411

L
Ligoml 已提交
412 413 414 415 416 417
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
418

L
Ligoml 已提交
419 420
    Examples:
        .. code-block:: python
421

L
Ligoml 已提交
422
            import paddle.fluid as fluid
423

L
Ligoml 已提交
424 425
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
426

L
Ligoml 已提交
427 428 429
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
430 431 432
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
L
Ligoml 已提交
433 434
            % (type(min_version))
        )
435 436 437 438

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
L
Ligoml 已提交
439 440
            % (type(max_version))
        )
441 442 443 444 445

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
446 447
            "like '1.5.2.0', but received %s" % min_version
        )
448 449 450 451 452 453

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
454 455
                "like '1.5.2.0', but received %s" % max_version
            )
456 457

    version_installed = [
L
Ligoml 已提交
458 459 460 461
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
478 479 480
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
481 482 483 484
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
485 486 487
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
488 489 490
        return

    min_version_split = min_version.split('.')
L
Ligoml 已提交
491 492 493
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
494 495 496

    if max_version is not None:
        max_version_split = max_version.split('.')
L
Ligoml 已提交
497 498 499
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
500

L
Ligoml 已提交
501 502 503 504
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
505 506
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
L
Ligoml 已提交
507 508
                % (min_version, max_version, fluid_version.full_version)
            )
509 510 511 512 513
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
L
Ligoml 已提交
514 515
                % (min_version, fluid_version.full_version, min_version)
            )
516 517


518 519
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
520 521 522
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
523 524 525 526 527 528 529
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
530 531 532 533
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
534 535 536 537 538
        return func(*args, **kwargs)

    return __impl__


539 540 541
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
L
Ligoml 已提交
542 543 544 545 546

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
547 548 549 550 551
        return func(*args, **kwargs)

    return __impl__


552 553
def _static_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
554 555 556 557
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
558 559 560 561 562
        return func(*args, **kwargs)

    return __impl__


563 564 565 566 567
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


568 569 570 571 572 573
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
574
# same base class.
575 576 577
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
578 579 580 581
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
L
Ligoml 已提交
582 583
            % (func.__name__, func.__name__)
        )
584 585 586 587

    return __impl__


T
tangwei12 已提交
588 589
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
590 591 592 593 594 595 596 597 598
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
L
Ligoml 已提交
599 600
                DeprecationWarning,
            )
601 602 603 604 605 606 607
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


608 609
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
610
static_only = wrap_decorator(_static_only_)
611
fake_interface_only = wrap_decorator(_fake_interface_only_)
612
non_static_only = wrap_decorator(_non_static_only_)
613 614


L
lujun 已提交
615 616
def _dygraph_tracer():
    return _dygraph_tracer_
617

W
Wu Yi 已提交
618

619 620 621 622
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
623
def _current_expected_place():
624 625 626
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
627 628 629 630 631
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
632
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
633 634 635 636 637
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
638 639 640 641 642 643
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
644
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
645 646 647 648 649
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
650 651 652 653 654 655
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
656
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
657 658 659 660 661
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
677
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
678 679


L
Leo Chen 已提交
680 681
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
L
Ligoml 已提交
682 683
    """
    convert VarBase tp numpy
T
tangwei12 已提交
684

L
Ligoml 已提交
685 686 687
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
688 689 690 691 692 693 694 695 696
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
697
def _cpu_num():
698
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
699 700 701 702 703 704 705
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
L
Ligoml 已提交
706 707 708
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
709
        os.environ['CPU_NUM'] = str(1)
710
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
711 712 713 714 715 716 717 718 719 720
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
721 722


723 724 725 726 727 728 729 730 731
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


732 733 734 735 736 737 738 739 740
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


741 742 743 744 745 746 747 748 749
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


780 781 782 783 784 785 786
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
L
Ligoml 已提交
787

788 789 790 791 792 793
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

L
Ligoml 已提交
794
    Returns: None
795 796 797 798 799 800 801 802 803 804

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
820 821 822 823
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

824
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
825 826 827 828

    Examples:
        .. code-block:: python

829
            import paddle
830
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
831 832 833 834
    """
    return core.is_compiled_with_cuda()


835 836 837 838 839 840 841 842 843 844
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
845
            support_gpu = paddle.device.is_compiled_with_rocm()
846 847 848 849
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
850
def cuda_places(device_ids=None):
L
lujun 已提交
851
    """
852
    Note:
853 854 855
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
856
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
857 858

    If :code:`device_ids` is None, environment variable of
859
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
860
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
861
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
862
    If :code:`FLAGS_selected_gpus` is not set, all visible
863
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
864 865

    If :code:`device_ids` is not None, it should be the device
866
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
867
    the returned list would be
C
Chen Weihang 已提交
868
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
869

870
    Parameters:
871
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
872 873

    Returns:
C
Chen Weihang 已提交
874
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
875 876

    Examples:
L
Ligoml 已提交
877

L
lujun 已提交
878 879
        .. code-block:: python

C
Chen Weihang 已提交
880 881
            import paddle
            import paddle.static as static
T
tangwei12 已提交
882

883
            # required: gpu
L
Ligoml 已提交
884

C
Chen Weihang 已提交
885 886 887
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
888 889

    """
L
Ligoml 已提交
890
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
891
    if device_ids is None:
C
chengduo 已提交
892
        device_ids = _cuda_ids()
S
sneaxiy 已提交
893 894 895 896 897
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


898 899 900 901
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
902 903 904 905 906 907 908 909 910
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
911
        the returned list would be
S
sunzhongkai588 已提交
912
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
L
Ligoml 已提交
913

914 915 916 917 918 919
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
920

921 922
            # required: xpu

923 924
            import paddle
            import paddle.static as static
L
Ligoml 已提交
925

926 927 928
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
L
Ligoml 已提交
929
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
930 931 932 933 934 935 936
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


937 938 939 940
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
L
Ligoml 已提交
941

942 943 944 945 946 947 948 949 950
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
951
    the returned list would be
952
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
L
Ligoml 已提交
953

954 955 956 957 958 959 960 961 962 963 964
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
L
Ligoml 已提交
965

966 967 968
            paddle.enable_static()
            npu_places = static.npu_places()
    """
L
Ligoml 已提交
969
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
970 971 972 973 974 975 976
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
977
def cpu_places(device_count=None):
L
lujun 已提交
978
    """
C
Chen Weihang 已提交
979
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
980

S
add doc  
sneaxiy 已提交
981
    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
982
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
983 984
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
985 986
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
987

988 989
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
990 991

    Returns:
C
Chen Weihang 已提交
992
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
993 994

    Examples:
L
Ligoml 已提交
995

L
lujun 已提交
996 997
        .. code-block:: python

C
Chen Weihang 已提交
998 999
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1000

C
Chen Weihang 已提交
1001 1002 1003
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1004 1005
    """

S
sneaxiy 已提交
1006 1007 1008 1009 1010 1011
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1012
    """
1013
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1014 1015

    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
1016
    be determined by environment variable :code:`CPU_NUM`.
1017 1018 1019 1020
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1021

1022 1023
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1024 1025

    Returns:
1026
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1027 1028 1029 1030

    Examples:
        .. code-block:: python

1031
            import paddle.fluid as fluid
L
lujun 已提交
1032 1033 1034 1035 1036
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
L
Ligoml 已提交
1037
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1038
    if device_count is None:
1039 1040
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1041 1042


1043 1044
def mlu_places(device_ids=None):
    """
L
Ligoml 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
L
Ligoml 已提交
1077
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1078 1079 1080 1081 1082 1083 1084
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
L
Ligoml 已提交
1096 1097 1098
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1112
@signature_safe_contextmanager
1113 1114
def name_scope(prefix=None):
    """
1115

1116
    Generate hierarchical name prefix for the operators in Static Graph.
1117

L
Ligoml 已提交
1118
    Note:
T
Tao Luo 已提交
1119 1120
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1121
        Don't use it in dygraph, since it will cause memory leak.
1122 1123

    Args:
T
Tao Luo 已提交
1124
        prefix(str, optional): prefix. Default is none.
1125 1126

    Examples:
L
Ligoml 已提交
1127

1128
        .. code-block:: python
T
Tink_Y 已提交
1129

1130 1131 1132
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1133
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1134
             b = a + 1
1135
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1136
                c = b * 1
1137
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1138
                d = c / 1
1139 1140 1141
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1142 1143
                g = f - 1

L
Ligoml 已提交
1144
          # Op are created in the default main program.
1145
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1161 1162
    """
    # TODO(panyx0718): Only [0-9a-z].
1163
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1164
    if _non_static_mode():
L
Leo Chen 已提交
1165 1166
        yield
    else:
T
tianshuo78520a 已提交
1167
        assert prefix, "namescope prefix can not be empty."
1168 1169
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1170 1171 1172 1173
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1186 1187
def generate_control_dev_var_name():
    import random
L
Ligoml 已提交
1188

W
Wu Yi 已提交
1189
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1190 1191 1192 1193


def grad_var_name(var_name):
    """
1194 1195
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1196 1197 1198
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1199

1200
def convert_np_dtype_to_dtype_(np_dtype):
1201 1202
    """
    Convert the data type in numpy to the data type in Paddle
1203

1204
    Args:
1205
        np_dtype(np.dtype): the data type in numpy.
1206

1207 1208
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1209 1210

    """
1211 1212
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1213
        return core.VarDesc.VarType.FP32
1214
    elif dtype == np.float64:
1215
        return core.VarDesc.VarType.FP64
1216
    elif dtype == np.float16:
1217
        return core.VarDesc.VarType.FP16
1218
    elif dtype == np.int32:
1219
        return core.VarDesc.VarType.INT32
1220
    elif dtype == np.int16:
1221
        return core.VarDesc.VarType.INT16
1222
    elif dtype == np.int64:
1223
        return core.VarDesc.VarType.INT64
1224
    elif dtype == np.bool_:
1225
        return core.VarDesc.VarType.BOOL
1226
    elif dtype == np.uint16:
1227 1228 1229
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1230 1231
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1232 1233
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1234 1235 1236 1237
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1238
    else:
M
minqiyang 已提交
1239
        raise ValueError("Not supported numpy dtype %s" % dtype)
1240 1241 1242


def dtype_is_floating(dtype):
1243 1244 1245
    """
    Check the data type is floating or not.
    Args:
1246
        dtype(np.dtype|core.VarDesc.VarType): data type.
1247 1248 1249 1250 1251
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1252
    if not isinstance(dtype, core.VarDesc.VarType):
1253 1254
        dtype = convert_np_dtype_to_dtype_(dtype)

1255
    return dtype in [
L
Ligoml 已提交
1256 1257 1258
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1259
    ]
1260 1261


Y
Yang Yang(Tony) 已提交
1262
def _debug_string_(proto, throw_on_error=True):
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1274
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1275
    if not proto.IsInitialized(error_fields) and throw_on_error:
1276 1277
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
L
Ligoml 已提交
1278 1279 1280
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1281 1282 1283
    return proto.__str__()


L
Ligoml 已提交
1284 1285 1286 1287 1288 1289 1290 1291
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1292 1293 1294 1295
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1296
    if _in_eager_mode_:
1297
        eager_tensor = core.eager.Tensor(
1298
            dtype if dtype else core.VarDesc.VarType.FP32,
L
Ligoml 已提交
1299 1300
            list(shape) if shape else [],
            name,
1301
            type if type else core.VarDesc.VarType.LOD_TENSOR,
L
Ligoml 已提交
1302 1303
            True if persistable else False,
        )
1304 1305
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1306
    else:
L
Ligoml 已提交
1307 1308 1309 1310 1311 1312 1313
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1314 1315


1316 1317 1318 1319 1320 1321 1322
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
L
Ligoml 已提交
1323 1324
    if not vals:
        return False
1325 1326 1327
    return all(isinstance(v, expected_type) for v in vals)


1328 1329 1330 1331 1332
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1333
            return issubclass(t, core.eager.Tensor)
1334
        else:
J
Jiabin Yang 已提交
1335 1336
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1337 1338 1339 1340 1341 1342 1343 1344
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1345
            return issubclass(t, EagerParamBase)
1346
        else:
J
Jiabin Yang 已提交
1347 1348
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1349 1350 1351 1352
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1353
class Variable(object):
1354
    """
J
Jiabin Yang 已提交
1355
    **Notes**:
1356
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1357

1358 1359
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1360 1361 1362
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1363
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1364 1365
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1366

1367
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1368
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1369

T
tianshuo78520a 已提交
1370
    Most of a Variable's member variables can be set to be None. It mean
1371
    it is not available or will be specified later.
1372

1373
    Examples:
1374 1375
        In Static Graph Mode:

1376 1377
        .. code-block:: python

1378
            import paddle.fluid as fluid
1379
            cur_program = fluid.Program()
1380 1381 1382 1383
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1384

J
Jiabin Yang 已提交
1385
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1386 1387 1388 1389 1390 1391 1392 1393 1394

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1395 1396
    """

L
Ligoml 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1414 1415
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1416
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1417

Y
Yu Yang 已提交
1418
        if dtype is not None:
1419
            if not isinstance(dtype, core.VarDesc.VarType):
1420
                dtype = convert_np_dtype_to_dtype_(dtype)
1421

S
Steffy-zxf 已提交
1422 1423 1424 1425
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1426 1427 1428
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1429 1430
        self.belong_to_optimizer = belong_to_optimizer

1431 1432 1433 1434 1435
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1436

1437 1438 1439
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1440

1441 1442 1443
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Ligoml 已提交
1444 1445 1446 1447 1448
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1449

1450
        if shape is not None:
1451
            if is_new_var:
1452 1453 1454 1455 1456 1457
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1458 1459
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
L
Ligoml 已提交
1460 1461
                        "matched.".format(self.name, old_shape, shape)
                    )
1462 1463 1464 1465 1466 1467
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Ligoml 已提交
1468 1469 1470 1471 1472 1473
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1474 1475 1476 1477 1478 1479

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Ligoml 已提交
1480 1481 1482 1483 1484 1485
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1486 1487 1488 1489 1490 1491
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1492 1493
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1494
                        "persistable is {2}. They are not matched".format(
L
Ligoml 已提交
1495 1496 1497
                            self.name, self.persistable, persistable
                        )
                    )
1498

1499 1500
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1501

1502 1503 1504 1505 1506 1507 1508
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1509

1510 1511
        self.block.vars[name] = self
        self.op = None
1512
        self.stop_gradient = stop_gradient
1513
        self.is_data = is_data
Y
Yu Yang 已提交
1514

1515 1516 1517
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1518 1519
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1520

1521
        Returns:
J
Jiabin Yang 已提交
1522
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1523 1524 1525 1526

        Examples:
            .. code-block:: python

1527
                import paddle
1528

1529 1530 1531 1532
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1533

1534 1535
                # create a detached Variable
                y = x.detach()
1536
        """
1537

L
Ligoml 已提交
1538 1539 1540 1541
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1542 1543 1544 1545 1546 1547

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
1548 1549
            stop_gradient=True,
        )
1550

L
Ligoml 已提交
1551 1552 1553
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1554
        return output
1555

1556
    @fake_interface_only
1557
    def numpy(self):
1558
        """
J
Jiabin Yang 已提交
1559
        **Notes**:
T
tianshuo78520a 已提交
1560
            **This API is ONLY available in Dygraph mode**
1561

J
Jiabin Yang 已提交
1562
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1563 1564 1565 1566 1567

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1568
            ndarray: dtype is same as current Variable
1569 1570 1571 1572 1573 1574

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1575
                from paddle.fluid.dygraph import Linear
1576 1577 1578 1579
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1580
                    linear = Linear(32, 64)
1581
                    data = to_variable(data)
1582
                    x = linear(data)
1583 1584 1585
                    print(x.numpy())

        """
1586
        pass
1587

1588
    @fake_interface_only
1589
    def backward(self, retain_graph=False):
1590
        """
J
Jiabin Yang 已提交
1591
        **Notes**:
T
tianshuo78520a 已提交
1592
            **This API is ONLY available in Dygraph mode**
1593

1594
        Run backward of current Graph which starts from current Tensor.
1595

J
Jiabin Yang 已提交
1596
        Args:
1597 1598 1599 1600
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1601

J
Jiabin Yang 已提交
1602 1603
        Returns:
            NoneType: None
1604 1605 1606 1607 1608

        Examples:
            .. code-block:: python

                import numpy as np
1609 1610
                import paddle
                paddle.disable_static()
1611 1612

                x = np.ones([2, 2], np.float32)
1613 1614 1615 1616 1617 1618 1619
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1620 1621
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1622
                loss.backward()
1623 1624

        """
1625
        pass
1626

1627
    @fake_interface_only
1628
    def gradient(self):
1629
        """
J
Jiabin Yang 已提交
1630
        **Notes**:
T
tianshuo78520a 已提交
1631
            **This API is ONLY available in Dygraph mode**
1632 1633 1634

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1635
        Returns:
1636
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1637 1638 1639 1640 1641 1642 1643

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1644
                # example1: return ndarray
1645 1646 1647 1648 1649 1650 1651 1652 1653
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1654
                    loss2.backward()
1655 1656
                    print(loss2.gradient())

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1670
        """
1671
        pass
1672

1673
    @fake_interface_only
1674
    def clear_gradient(self):
1675
        """
J
Jiabin Yang 已提交
1676
        **Notes**:
T
tianshuo78520a 已提交
1677
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1678 1679

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1680

J
Jiabin Yang 已提交
1681
        Clear  (set to ``0`` ) the Gradient of Current Variable
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1700
                    loss2.backward()
1701 1702 1703 1704 1705
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1706
        pass
X
Xin Pan 已提交
1707

1708 1709 1710 1711
    @fake_interface_only
    def register_hook(self, hook):
        pass

1712
    def __str__(self):
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1729 1730
                import paddle
                import paddle.static as static
1731

1732 1733 1734
                paddle.enable_static()

                cur_program = static.Program()
1735 1736 1737 1738 1739 1740
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1741 1742
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
L
Ligoml 已提交
1743 1744 1745 1746
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1747
            dtype_str = str(self.dtype).split('.')[1]
L
Ligoml 已提交
1748 1749 1750 1751 1752 1753 1754
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1755
        else:
L
Ligoml 已提交
1756
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1757

1758
        if self.is_parameter:
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

L
Ligoml 已提交
1769 1770 1771 1772
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1773
        dist_context = get_default_distributed_context()
1774 1775
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
L
Ligoml 已提交
1776 1777 1778
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1779

1780
        return var_str
Y
Yang Yang(Tony) 已提交
1781

F
update  
fengjiayi 已提交
1782
    def to_string(self, throw_on_error, with_details=False):
1783 1784 1785
        """
        Get debug string.

J
Jiabin Yang 已提交
1786 1787 1788 1789 1790
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1791

1792 1793
        Returns:
            str: The debug string.
1794 1795 1796 1797 1798

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1799
                import paddle
1800

1801
                paddle.enable_static()
1802 1803 1804 1805 1806
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1807
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1808
                print("=============with detail===============")
1809
                print(new_variable.to_string(True, True))
1810
        """
1811
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
1812 1813
            with_details, bool
        )
1814
        protostr = self.desc.serialize_to_string()
1815
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1816 1817
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
L
Ligoml 已提交
1818
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1819
            for attr_name in additional_attr:
L
Ligoml 已提交
1820 1821 1822 1823
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
1824

F
update  
fengjiayi 已提交
1825
        return res_str
1826 1827 1828

    __repr__ = __str__

1829 1830 1831
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
L
Ligoml 已提交
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1856
    @property
1857
    def stop_gradient(self):
J
Jiabin Yang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1873 1874
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1875 1876 1877
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1878 1879
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1880 1881 1882 1883
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1884
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1885 1886
                assert (out1.gradient() == 0).all()
        """
1887
        return self.desc.stop_gradient()
1888

1889 1890
    @stop_gradient.setter
    def stop_gradient(self, s):
1891
        self.desc.set_stop_gradient(s)
1892

1893 1894
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1916
        return self.desc.persistable()
1917

Y
Yu Yang 已提交
1918 1919
    @persistable.setter
    def persistable(self, p):
1920
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1947 1948
    @property
    def name(self):
J
Jiabin Yang 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1965
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1966

1967 1968 1969 1970 1971 1972
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1973 1974
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1975

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1987 1988
    @name.setter
    def name(self, new_name):
1989
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1990

Y
Yu Yang 已提交
1991 1992
    @property
    def shape(self):
J
Jiabin Yang 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2010
        # convert to tuple, make it as same as numpy API.
2011
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2012 2013

    @property
F
fengjiayi 已提交
2014
    def dtype(self):
J
Jiabin Yang 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2031
        return self.desc.dtype()
Y
Yu Yang 已提交
2032 2033 2034

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2048
            import paddle
J
Jiabin Yang 已提交
2049
            import paddle.fluid as fluid
2050 2051

            paddle.enable_static()
J
Jiabin Yang 已提交
2052 2053 2054 2055 2056 2057 2058
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2059 2060
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2061 2062
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2063
        return self.desc.lod_level()
Y
Yu Yang 已提交
2064

Y
Yu Yang 已提交
2065 2066
    @property
    def type(self):
J
Jiabin Yang 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2083
        return self.desc.type()
Y
Yu Yang 已提交
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
L
Ligoml 已提交
2118 2119
            stop_gradient=False,
        )
2120 2121 2122 2123 2124
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
L
Ligoml 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2134 2135
        return out

2136 2137 2138
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
L
Ligoml 已提交
2139
        Variable. It remains in the current graph, that is, the cloned Variable
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
2164 2165
            stop_gradient=self.stop_gradient,
        )
2166

L
Ligoml 已提交
2167 2168 2169
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2170 2171
        return output

W
Wu Yi 已提交
2172
    def _set_error_clip(self, error_clip):
2173 2174 2175 2176 2177 2178 2179 2180 2181
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2182 2183
        self.error_clip = error_clip

2184 2185 2186 2187 2188 2189 2190 2191
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

L
Ligoml 已提交
2192
        Returns:
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

L
Ligoml 已提交
2206
        Returns:
2207 2208 2209 2210 2211 2212
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2224
            raise ValueError("slice step can not be zero")
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
L
Ligoml 已提交
2235 2236 2237
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
L
Ligoml 已提交
2283 2284 2285
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2286
                    raise IndexError("invalid index")
L
Ligoml 已提交
2287 2288 2289 2290 2291
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2305
    def _cloneVar(self, copy=False):
2306 2307
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2308
                name=unique_name.generate_with_ignorable_key(self.name),
L
Ligoml 已提交
2309 2310
                dtype=self.dtype,
            )
2311 2312 2313 2314
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2315
        new_var = self._cloneVar()
L
Ligoml 已提交
2316 2317 2318 2319 2320 2321
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2322 2323 2324
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2325
        new_var = self._cloneVar()
L
Ligoml 已提交
2326 2327 2328 2329 2330 2331 2332 2333
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2334 2335 2336 2337 2338
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2339
                return self._cloneVar(True)
2340 2341 2342 2343 2344 2345 2346
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
L
Ligoml 已提交
2347 2348 2349
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2350 2351 2352
                        start += step
                else:
                    while start > stop:
L
Ligoml 已提交
2353 2354 2355
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2356 2357 2358 2359
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2360
                return self._cloneVar(True)
2361
            index = int(item)
L
Ligoml 已提交
2362 2363 2364
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2365 2366 2367 2368 2369 2370
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2371
        return _getitem_impl_(self, item)
2372

2373
    def __setitem__(self, item, value):
2374
        return _setitem_impl_(self, item, value)
2375

2376 2377
    def get_value(self, scope=None):
        """
L
Ligoml 已提交
2378
        Get the value of variable in given scope.
2379 2380

        Args:
L
Ligoml 已提交
2381
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2392
                import paddle.static as static
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2417 2418
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2419 2420
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
2421

2422 2423
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2424 2425 2426 2427
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2428 2429 2430 2431 2432

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2433 2434 2435
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2436 2437 2438 2439 2440
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
L
Ligoml 已提交
2441
        Set the value to the tensor in given scope.
2442 2443 2444

        Args:
            value(Tensor/ndarray) : The value to be set.
L
Ligoml 已提交
2445
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2446 2447 2448 2449 2450
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
L
Ligoml 已提交
2451

2452 2453 2454 2455
        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2456
                import paddle.static as static
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2483
        # can not be imported at the begainning of this file.
2484 2485 2486 2487 2488
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
L
Ligoml 已提交
2489 2490 2491 2492
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2493 2494 2495

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2496 2497 2498 2499
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2500 2501 2502 2503 2504 2505

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2506 2507 2508
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
L
Ligoml 已提交
2519 2520 2521 2522
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2533 2534 2535 2536
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2537 2538 2539 2540
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2541 2542 2543 2544 2545 2546 2547
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
L
Ligoml 已提交
2571 2572
            dtype=core.VarDesc.VarType.INT64,
        )
2573

L
Ligoml 已提交
2574 2575 2576
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2577 2578
        return output

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2633
    def dist_attr(self):
2634
        """
2635
        Get distributed attribute of this Variable.
2636
        """
2637
        return self.desc.dist_attr
2638

2639 2640
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2641
        """
2642
        Set distributed attribute of this Variable.
2643
        """
2644
        self.desc.dist_attr = dist_attr
2645

Y
Yu Yang 已提交
2646

F
fengjiayi 已提交
2647 2648 2649
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2650

2651 2652
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2653 2654 2655 2656
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2657
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2658 2659 2660 2661 2662
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2663 2664 2665 2666
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2667 2668 2669 2670 2671 2672 2673 2674
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
L
Ligoml 已提交
2675 2676
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2677 2678 2679 2680 2681 2682
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2683 2684 2685 2686 2687 2688 2689 2690
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2691 2692
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2693 2694
        return self.op_proto_map[type]

2695 2696
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2697
        custom_op_names = []
2698 2699 2700
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2701 2702 2703
                custom_op_names.append(proto.type)

        return custom_op_names
2704

2705 2706 2707 2708
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2709
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2710
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2711
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
L
Ligoml 已提交
2712
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2713 2714
        }

F
fengjiayi 已提交
2715

X
Xin Pan 已提交
2716
class Operator(object):
2717
    """
2718 2719 2720 2721 2722 2723 2724
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2725
        type(str): The type of operator. Default None.
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2746
        Block.append_op or Block._prepend_op instead.
2747 2748 2749 2750

    Examples:
        .. code-block:: python

2751
            import paddle.fluid as fluid
2752
            cur_program = fluid.Program()
2753 2754 2755 2756 2757
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2758
    """
L
Ligoml 已提交
2759

2760
    OP_WITHOUT_KERNEL_SET = {
L
Ligoml 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2792
    }
2793

L
Ligoml 已提交
2794 2795 2796
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2807
        if _non_static_mode():
2808 2809
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2810 2811
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2812
            self._type = type
M
minqiyang 已提交
2813
            self.attrs = attrs if attrs else {}
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2824 2825 2826
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2827 2828 2829
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2830
                op_attrs[
L
Ligoml 已提交
2831 2832
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2833 2834

            role_var_name = op_maker.kOpRoleVarAttrName()
L
Ligoml 已提交
2835 2836 2837 2838
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2839
                op_attrs[role_var_name] = self.block.program._op_role_var
2840 2841 2842 2843 2844

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2845 2846 2847 2848 2849
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2850 2851 2852
                return
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2853 2854
                    "`type` to initialized an Operator can not be None."
                )
2855 2856
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2857 2858 2859
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2860
                        '  File "{}", line {}, in {}'.format(
L
Ligoml 已提交
2861 2862 2863 2864 2865 2866
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2867 2868 2869 2870 2871 2872 2873

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2874 2875 2876 2877 2878 2879 2880 2881
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
L
Ligoml 已提交
2882 2883 2884
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2885
                if 'force_cpu' in op_attrs:
L
Ligoml 已提交
2886 2887 2888
                    if (
                        type == 'less_than' and op_attrs['force_cpu'] != None
                    ) or op_attrs['force_cpu'] != False:
2889 2890 2891
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
L
Ligoml 已提交
2892 2893
                            "used at the same time." % type
                        )
2894
            if _current_pipeline_stage is not None:
L
Ligoml 已提交
2895 2896 2897 2898 2899
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2900
                )
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
L
Ligoml 已提交
2911 2912 2913
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2914 2915
                    if found:
                        in_args = inputs[in_proto.name]
2916
                        if not isinstance(in_args, (list, tuple)):
2917 2918 2919 2920
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
L
Ligoml 已提交
2921 2922
                                % (in_proto.name, len(in_args))
                            )
2923
                        in_arg_names = []
2924
                        for index, arg in enumerate(in_args):
2925 2926 2927 2928
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2929
                            elif isinstance(arg, (Variable, core.VarBase)):
2930
                                in_arg_names.append(cpt.to_text(arg.name))
2931
                            else:
2932 2933 2934 2935
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
L
Ligoml 已提交
2936 2937 2938
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2939 2940 2941 2942 2943 2944 2945 2946 2947
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2948
                        raise ValueError(
L
Ligoml 已提交
2949 2950 2951 2952 2953 2954
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2955 2956 2957 2958 2959 2960 2961 2962 2963
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
L
Ligoml 已提交
2964 2965
                            % (out_proto.name, len(out_args))
                        )
2966 2967
                    out_arg_names = []
                    for arg in out_args:
2968 2969 2970 2971
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2972
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2973
                        if not _non_static_mode():
2974 2975 2976 2977
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2978 2979
                    self.desc.set_output(out_proto.name, out_arg_names)

2980
            extra_attrs_map = core.get_op_extra_attrs(type)
2981 2982 2983 2984 2985
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
L
Ligoml 已提交
2986 2987 2988
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2989 2990 2991
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2992
                for attr_name in extra_attrs_map.keys():
L
Ligoml 已提交
2993 2994 2995 2996 2997 2998
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2999 3000
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3001

J
jianghaicheng 已提交
3002 3003
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3004
                if global_ipu_index >= 0:
L
Ligoml 已提交
3005 3006 3007
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3008
                if global_ipu_stage >= 0:
L
Ligoml 已提交
3009 3010 3011
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3012

3013 3014 3015 3016 3017
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3018
    def _has_kernel(self, op_type):
3019 3020
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3021
    def to_string(self, throw_on_error):
3022
        """
3023 3024
        Get debug string.

3025
        Args:
3026 3027
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3028

3029 3030
        Returns:
            str: The debug string.
3031 3032

        """
3033
        protostr = self.desc.serialize_to_string()
3034
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
3035 3036
        return _debug_string_(proto, throw_on_error)

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3069
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3070 3071
            type(skip_op_callstack)
        )
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3098 3099 3100
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
L
Ligoml 已提交
3101 3102 3103
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
L
Ligoml 已提交
3114 3115
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3116 3117 3118 3119 3120
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3121 3122
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
L
Ligoml 已提交
3123 3124
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3125 3126 3127 3128 3129 3130 3131
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
L
Ligoml 已提交
3132 3133
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3134 3135 3136 3137 3138
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3139
            # it is bytes of serialized protobuf
L
Ligoml 已提交
3140 3141 3142 3143 3144
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3145 3146
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3147 3148 3149 3150 3151 3152 3153 3154 3155
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

L
Ligoml 已提交
3156 3157 3158
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3159

3160 3161 3162 3163
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

L
Ligoml 已提交
3164 3165 3166 3167
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3168
        dist_context = get_default_distributed_context()
3169 3170
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
L
Ligoml 已提交
3171 3172 3173
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3174

3175
        if outputs_str != "{}":
L
Ligoml 已提交
3176 3177 3178 3179 3180 3181
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3182
        else:
L
Ligoml 已提交
3183 3184 3185
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3186 3187
        return op_str

Y
Yang Yang(Tony) 已提交
3188
    def __str__(self):
3189
        return self._to_readable_code()
3190 3191 3192

    __repr__ = __str__

F
fengjiayi 已提交
3193 3194
    @property
    def type(self):
3195
        return self.desc.type()
F
fengjiayi 已提交
3196 3197

    def input(self, name):
3198
        r"""
3199
        Get the input arguments according to the input parameter name.
3200

3201 3202
        Args:
            name(str): The input parameter name.
3203

3204 3205 3206
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3207
        """
F
fengjiayi 已提交
3208 3209
        return self.desc.input(name)

W
Wu Yi 已提交
3210
    def _rename_input(self, old_name, new_name):
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3221
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3222

W
Wu Yi 已提交
3223
    def _rename_output(self, old_name, new_name):
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3234
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3235

F
fengjiayi 已提交
3236 3237 3238 3239
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3240 3241 3242 3243 3244 3245 3246 3247
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3248
    def output(self, name):
3249
        r"""
3250
        Get output arguments by the output parameter name.
3251

3252 3253
        Args:
            name(str): The output parameter name.
3254

3255 3256 3257
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3258
        """
F
fengjiayi 已提交
3259 3260 3261 3262 3263 3264
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3265 3266 3267 3268 3269 3270
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
L
Ligoml 已提交
3271 3272
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3273

F
fengjiayi 已提交
3274
    def has_attr(self, name):
3275
        """
3276 3277
        Whether this Operator has the attribute with name or not.

3278
        Args:
3279
            name(str): the attribute name.
3280

3281 3282
        Returns:
            bool: True if has this attribute.
3283 3284

        """
F
fengjiayi 已提交
3285 3286 3287
        return self.desc.has_attr(name)

    def attr_type(self, name):
3288
        """
3289
        Get the type of attribute by attribute's name.
3290

3291 3292
        Args:
            name(str): the attribute name.
3293

3294 3295
        Returns:
            core.AttrType: the attribute type.
3296
        """
3297
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3298

W
Wu Yi 已提交
3299
    def _set_attr(self, name, val):
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3310 3311
        self._update_desc_attr(name, val)

3312 3313 3314
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3326 3327 3328 3329 3330
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3331
            self.desc.set_block_attr(name, val.desc)
3332
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3333
            self.desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
3334 3335 3336
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3337 3338
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3375

F
fengjiayi 已提交
3376 3377
    @property
    def attr_names(self):
3378
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3379 3380

    def attr(self, name):
3381
        """
3382 3383
        Get the attribute by name.

3384
        Args:
3385
            name(str): the attribute name.
3386

3387 3388
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3389 3390
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3391
        return self.desc.attr(name)
Y
Yu Yang 已提交
3392

W
Wu Yi 已提交
3393
    def _block_attr_id(self, name):
3394
        """
G
gongweibao 已提交
3395
        Get the block attribute's id by name.
3396

3397 3398
        Args:
            name(str): the attribute name.
3399

3400 3401
        Returns:
            int: the block index.
3402
        """
W
Wu Yi 已提交
3403
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3404

W
Wu Yi 已提交
3405
    def _block_attr(self, name):
G
gongweibao 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3416
        id = self._block_attr_id(name)
L
Ligoml 已提交
3417
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3418 3419
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3420
    def _blocks_attr(self, name):
G
gongweibao 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3431
        for i in self._blocks_attr_ids(name):
L
Ligoml 已提交
3432
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3433 3434 3435 3436
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3437
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3448
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3461 3462 3463 3464 3465
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3480 3481 3482 3483 3484
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3485 3486 3487 3488 3489 3490
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3491
    def all_attrs(self):
F
fengjiayi 已提交
3492
        """
3493 3494 3495
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3496
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3497 3498 3499 3500
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3501
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3502
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3503
                attr_map[n] = self._block_attr(n)
3504
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3505
                attr_map[n] = self._blocks_attr(n)
3506 3507 3508 3509 3510 3511
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3512

F
fengjiayi 已提交
3513 3514
        return attr_map

3515 3516 3517
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3518 3519 3520 3521

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3522 3523 3524
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3525 3526 3527 3528 3529 3530 3531 3532

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3533 3534
            return False

3535 3536 3537 3538 3539 3540
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3541
    @property
3542
    def dist_attr(self):
3543
        """
3544
        Get distributed attribute of this Variable.
3545
        """
3546
        return self.desc.dist_attr
3547

3548 3549
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3550
        """
3551
        Set distributed attribute of this Variable.
3552
        """
3553
        self.desc.dist_attr = dist_attr
3554

Y
Yu Yang 已提交
3555

Y
Yu Yang 已提交
3556
class Block(object):
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3571
        use `Program._create_block()` to create a block.
3572 3573 3574 3575

    Examples:
        .. code-block:: python

3576 3577 3578
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3579 3580 3581 3582 3583 3584 3585 3586 3587
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3588
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3589
        self.desc = program.desc.block(idx)
3590
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3591
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3592
        self.program = program
3593
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3594

3595
    def __str__(self):
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3630
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3631 3632
            type(skip_op_callstack)
        )
3633 3634 3635 3636 3637 3638 3639
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
L
Ligoml 已提交
3640 3641
                op._to_readable_code(skip_op_callstack)
            )
3642 3643
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3644

F
fengjiayi 已提交
3645 3646
    def to_string(self, throw_on_error, with_details=False):
        """
3647 3648
        Get debug string.

F
fengjiayi 已提交
3649 3650
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3651
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3652
            with_details(bool): more details about variables and parameters
3653 3654
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3655

3656 3657
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3658
        """
3659
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
3660 3661
            with_details, bool
        )
F
fengjiayi 已提交
3662
        if with_details:
F
fengjiayi 已提交
3663
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3664
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
L
Ligoml 已提交
3665 3666 3667
                self.idx,
                self.parent_idx,
            )
3668
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3669
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3670 3671
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3672
            for op in self.ops:
F
fengjiayi 已提交
3673
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3674 3675
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3676 3677 3678
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3679
            proto = framework_pb2.BlockDesc.FromString(
L
Ligoml 已提交
3680 3681
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
3682 3683
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3684 3685 3686

    __repr__ = __str__

Y
Yu Yang 已提交
3687 3688
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3689
        return self.desc.parent
Y
Yu Yang 已提交
3690

Y
Yu Yang 已提交
3691 3692 3693 3694
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3695
    def _set_forward_block_idx(self, idx):
3696 3697 3698 3699 3700 3701 3702 3703 3704
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3705
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3706

3707 3708 3709 3710 3711 3712 3713 3714
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3715 3716
    @property
    def idx(self):
Y
Yu Yang 已提交
3717
        return self.desc.id
Y
Yu Yang 已提交
3718

Q
Qiao Longfei 已提交
3719
    def var(self, name):
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3733
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3734
            raise TypeError(
L
Ligoml 已提交
3735 3736 3737
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3738 3739
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3740
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3741
        return v
Q
Qiao Longfei 已提交
3742

X
Xin Pan 已提交
3743
    def _find_var_recursive(self, name):
3744 3745 3746 3747 3748 3749 3750
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3751
            Variable: the Variable with the giving name. Or None if not found.
3752
        """
Y
Yu Yang 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3777
        return None
Y
Yu Yang 已提交
3778

X
Xin Pan 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3798

Q
Qiao Longfei 已提交
3799
    def all_parameters(self):
3800
        return list(self.iter_parameters())
3801

3802
    def iter_parameters(self):
L
Ligoml 已提交
3803 3804 3805 3806 3807
        return (
            item[1]
            for item in six.iteritems(self.vars)
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3808

Y
Yu Yang 已提交
3809
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3810
        if _non_static_mode():
L
Leo Chen 已提交
3811 3812
            var = _varbase_creator(*args, **kwargs)
        else:
3813 3814 3815
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3816
        return var
Y
Yu Yang 已提交
3817

Q
Qiao Longfei 已提交
3818 3819 3820
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3821
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3822 3823
        """
        Rename variable in vars and ops' inputs and outputs
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3836
        """
M
minqiyang 已提交
3837 3838
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3839

T
typhoonzero 已提交
3840
        if not self.has_var(name):
3841
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3842 3843
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3844
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3845 3846 3847 3848 3849 3850
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3851
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3852 3853 3854 3855
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3856
        orig_var_type = v.type
M
minqiyang 已提交
3857
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3858
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3859
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3860
        if var_type == "Parameter":
L
Leo Chen 已提交
3861
            if in_dygraph_mode():
L
Ligoml 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3873
            else:
J
Jiabin Yang 已提交
3874
                if _in_legacy_dygraph():
L
Ligoml 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3886
                else:
L
Ligoml 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3899
        elif var_type == "Variable":
L
Ligoml 已提交
3900 3901 3902 3903 3904 3905 3906
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3907

W
Wu Yi 已提交
3908
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3909 3910 3911
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3912
        self._sync_with_cpp()
3913
        return var
T
typhoonzero 已提交
3914

3915 3916 3917
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3918
        self.desc._remove_var(cpt.to_bytes(name))
3919 3920
        del self.vars[name]

Y
Yu Yang 已提交
3921 3922
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3923
        param = None
L
Leo Chen 已提交
3924
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3925
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3926
        else:
J
Jiabin Yang 已提交
3927 3928 3929 3930
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3931

3932
        if 'initializer' in kwargs:
3933 3934 3935 3936 3937

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3938
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3939
                        # are treated as initialization ops that cause error.
3940
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3941 3942
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
L
Ligoml 已提交
3943 3944 3945
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3946
                        ]:
3947
                            continue
3948 3949 3950 3951 3952 3953 3954
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
L
Ligoml 已提交
3955 3956 3957 3958 3959 3960
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3961
            elif init_ops_len == 1:
3962
                # TODO already inited, do nothing, should log a warning
3963 3964 3965
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3966
        return param
Y
Yu Yang 已提交
3967

Y
Yu Yang 已提交
3968
    def append_op(self, *args, **kwargs):
3969 3970 3971 3972 3973 3974
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3975
        if _non_static_mode():
3976
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3977
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3978
            type = kwargs.get("type", None)
3979 3980 3981
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
L
Ligoml 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3993

M
minqiyang 已提交
3994 3995 3996
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3997
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3998

L
Ligoml 已提交
3999 4000 4001 4002 4003 4004 4005 4006
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4007
        else:
4008 4009
            from paddle.fluid.dygraph.base import param_guard

4010
            op_desc = self.desc.append_op()
4011 4012 4013 4014 4015 4016
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
L
Ligoml 已提交
4017 4018 4019 4020 4021 4022 4023 4024
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4025

M
minqiyang 已提交
4026
            self.ops.append(op)
M
minqiyang 已提交
4027

4028 4029
        return op

W
Wu Yi 已提交
4030
    def _insert_op(self, index, *args, **kwargs):
4031 4032 4033 4034 4035 4036 4037 4038 4039
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4040
        self._sync_with_cpp()
F
fangshuixun007 已提交
4041
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4042

4043 4044
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
L
Ligoml 已提交
4045
        Insert an Operator according to the giving arguments,
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4060 4061 4062 4063 4064 4065 4066 4067 4068
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4069 4070
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4071
        self.desc._remove_op(index, index + 1)
4072 4073
        del self.ops[index]

W
Wu Yi 已提交
4074
    def _slice_ops(self, start, end):
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4085
        return self.ops[start:end]
Y
Yancey1989 已提交
4086

W
Wu Yi 已提交
4087
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4088
        if _non_static_mode():
J
Jiabin Yang 已提交
4089 4090
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
L
Ligoml 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4102
        else:
4103
            op_desc = self.desc._prepend_op()
L
Ligoml 已提交
4104 4105 4106 4107 4108 4109 4110 4111
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4112
            self.ops.insert(0, op)
4113

Y
Yu Yang 已提交
4114 4115
        return op

W
Wu Yi 已提交
4116
    def _sync_with_cpp(self):
4117
        """
4118 4119
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4120
        """
Q
Qiao Longfei 已提交
4121 4122 4123
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4124 4125 4126 4127
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
L
Ligoml 已提交
4128 4129 4130 4131 4132 4133 4134 4135
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4136
                else:
L
Ligoml 已提交
4137 4138 4139 4140 4141 4142
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4143

4144
        # sync variables removed from c++ end
4145
        for var in list(self.vars.keys()):
M
minqiyang 已提交
4146
            if not self.desc.find_var(cpt.to_bytes(var)):
4147 4148
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4149
        # sync operators from cpp
4150 4151 4152 4153
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4170 4171 4172 4173 4174

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4175
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4176 4177 4178 4179 4180 4181 4182

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4183 4184 4185 4186 4187
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
L
Ligoml 已提交
4188 4189 4190 4191 4192 4193
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4194 4195 4196 4197 4198
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4199 4200 4201 4202
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4203
    def _copy_param_info_from(self, other):
4204
        """
4205 4206
        Copy the information of parameters from the other block.

4207
        Args:
4208 4209 4210 4211 4212
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4213 4214 4215 4216 4217

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4218
            raise TypeError(
L
Ligoml 已提交
4219 4220
                "_copy_param_info_from should be invoked with Block"
            )
4221
        for p in other.iter_parameters():
4222 4223 4224
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4225 4226
                # if the Parameter is pruned, v may be None
                continue
4227
            assert isinstance(v, Variable)
4228
            new_p = None
L
Leo Chen 已提交
4229
            if in_dygraph_mode():
L
Ligoml 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4242
            else:
J
Jiabin Yang 已提交
4243
                if _in_legacy_dygraph():
L
Ligoml 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4256 4257 4258 4259 4260 4261 4262
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
L
Ligoml 已提交
4263 4264
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4265 4266 4267 4268 4269
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
L
Ligoml 已提交
4270 4271
                        name=v.name,
                    )
4272 4273
            self.vars[new_p.name] = new_p

4274
    def _clone_variable(self, var, force_persistable=True):
4275 4276
        """
        Clone a variable into current block.
4277

4278 4279
        Args:
            var: the variable to be cloned.
4280 4281 4282
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4283 4284

        Returns:
4285
            Variable: the new  variable cloned from 'var' in current block.
4286 4287
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4288 4289 4290
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
L
Ligoml 已提交
4291 4292 4293
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4294
        elif var.type == core.VarDesc.VarType.RAW:
L
Ligoml 已提交
4295 4296 4297
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4298 4299 4300 4301 4302 4303
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4304
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4305
                is_data=var.is_data,
L
Ligoml 已提交
4306 4307
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4308 4309 4310 4311 4312 4313 4314
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4315
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4316
                is_data=var.is_data,
L
Ligoml 已提交
4317 4318
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4319
        return ret_var
4320

Y
Yu Yang 已提交
4321

4322 4323 4324 4325
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4326
# of some old Python Variables(all old Python Operators) may have
4327
# been destructed.
L
Ligoml 已提交
4328 4329 4330
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4331 4332 4333 4334
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
L
Ligoml 已提交
4335 4336 4337 4338 4339 4340 4341
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4342 4343 4344 4345 4346
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4359 4360 4361
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4443
    def remove_input_by_id(self, node_id):
4444 4445 4446 4447 4448 4449
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4450
        self.node.remove_input(node_id)
4451

4452
    def remove_input(self, node):
4453 4454 4455 4456
        """
        Remove a node from inputs.

        Args:
4457
            node(IrNode): the node being removed.
4458
        """
4459
        self.node.remove_input(node.node)
4460

4461
    def append_input(self, node):
4462 4463 4464 4465
        """
        Append a node in inputs.

        Args:
4466
            node(IrNode): the node being appended.
4467
        """
4468
        self.node.append_input(node.node)
4469 4470 4471 4472 4473 4474 4475 4476

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4477
    def remove_output_by_id(self, node_id):
4478 4479 4480 4481 4482 4483
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4484
        self.node.remove_output(node_id)
4485

4486
    def remove_output(self, node):
4487 4488 4489 4490
        """
        Remove a node from outputs.

        Args:
4491
            node(IrNode): the node being removed.
4492
        """
4493
        self.node.remove_output(node.node)
4494

4495
    def append_output(self, node):
4496 4497 4498 4499
        """
        Append a node in outputs.

        Args:
4500
            node(IrNode): the node being appended.
4501
        """
4502
        self.node.append_output(node.node)
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4537 4538 4539
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
L
Ligoml 已提交
4550 4551 4552
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4553 4554 4555 4556 4557 4558 4559 4560 4561
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
L
Ligoml 已提交
4562 4563 4564
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4565 4566
        return self.node.var().persistable()

4567 4568 4569 4570 4571 4572 4573
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
L
Ligoml 已提交
4574 4575 4576
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4577 4578 4579 4580 4581 4582 4583 4584 4585
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
L
Ligoml 已提交
4586 4587 4588
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4589 4590 4591 4592 4593 4594 4595 4596 4597
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
L
Ligoml 已提交
4598 4599 4600
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4601 4602
        return self.node.var().shape()

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4636 4637 4638
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
L
Ligoml 已提交
4650 4651 4652
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4653 4654
        self.node.op()._rename_input(old_input_name, new_input_name)

4655 4656 4657 4658 4659 4660 4661 4662
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
L
Ligoml 已提交
4663 4664 4665
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4666 4667
        self.node.op()._rename_output(old_output_name, new_output_name)

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4678 4679 4680
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4693 4694 4695
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4696 4697 4698 4699 4700 4701 4702 4703 4704
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
L
Ligoml 已提交
4705 4706 4707
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4708 4709
        return self.node.op().set_type(new_type)

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
L
Ligoml 已提交
4724 4725 4726
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4727
        desc = self.node.op()
4728 4729 4730 4731 4732
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4733
            desc.set_block_attr(name, val.desc)
4734
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4735
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
4736 4737 4738
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4739 4740 4741 4742
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4743 4744 4745 4746 4747 4748 4749
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
L
Ligoml 已提交
4750 4751 4752
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4753 4754 4755 4756 4757 4758 4759 4760 4761
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
L
Ligoml 已提交
4762 4763 4764
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4765 4766
        return self.node.op().output_arg_names()

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4788 4789
class IrGraph(object):
    """
4790
    Python IrGraph. Beneath it is a core.Graph, which is used for
4791
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4792 4793
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4794 4795 4796 4797
    """

    def __init__(self, graph, for_test=False):
        """
4798 4799
        Construct an IrGraph using core.Graph.

4800 4801 4802 4803 4804
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
L
Ligoml 已提交
4805 4806
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4807 4808 4809
        self.graph = graph
        self._for_test = for_test

4810 4811 4812 4813
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4814 4815 4816
        Warns:
            The method only clones the graph structure, not its attributes.

4817 4818 4819
        Returns:
            IrGraph: A new and duplicated graph.
        """
4820
        g = self.graph.clone()
4821 4822
        return IrGraph(g, self._for_test)

4823
    def is_test(self):
4824 4825 4826
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4827 4828
        return self._for_test

W
WangZhen 已提交
4829
    def all_nodes(self):
4830 4831 4832
        """
        Return all nodes included in the graph as a set.
        """
4833
        return {IrNode(node) for node in self.graph.nodes()}
4834

4835
    def all_var_nodes(self):
4836 4837 4838
        """
        Return all variable nodes included in the graph as a set.
        """
4839
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4840

4841
    def all_persistable_nodes(self):
4842 4843 4844
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4845 4846
        persistable_nodes = set()
        for node in self.graph.nodes():
L
Ligoml 已提交
4847 4848 4849 4850 4851
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4852
                persistable_nodes.add(node)
4853
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4854

4855
    def all_op_nodes(self):
4856 4857 4858
        """
        Return all operator nodes included in the graph as a set.
        """
4859
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4860

4861 4862 4863 4864 4865 4866
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4867
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4868 4869 4870 4871 4872 4873 4874 4875 4876
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4877
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4889
            IrVarNode: the created persistable variable node.
4890
        """
4891 4892 4893 4894 4895
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4896
        return IrVarNode(self.graph.create_var_node(var_desc))
4897 4898

    def create_var_node(self, name, var_type, shape, var_dtype):
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4910
            IrVarNode: the created variable node.
4911 4912
        """

4913 4914 4915 4916
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4917
        return IrVarNode(self.graph.create_var_node(var_desc))
4918

4919 4920 4921 4922 4923 4924
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4925
    def create_var_node_from_desc(self, var_desc):
4926 4927 4928 4929 4930 4931 4932 4933
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4934
            IrVarNode: the created variable node.
4935
        """
4936
        return IrVarNode(self.graph.create_var_node(var_desc))
4937 4938

    def create_op_node(self, op_type, attrs, inputs, outputs):
4939 4940 4941 4942 4943 4944 4945
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4946
            outputs(dict): the outputs of the operator node.
4947 4948

        Returns:
4949
            IrOpNode: the created operator node.
4950
        """
4951 4952
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4953
        for attr, value in six.iteritems(attrs):
4954
            self._update_desc_attr(op_desc, attr, value)
4955
        for input_name, var_nodes in six.iteritems(inputs):
4956 4957
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4958 4959 4960
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4961
        for output_name, var_nodes in six.iteritems(outputs):
4962 4963
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4964 4965 4966
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4967
        return IrOpNode(self.graph.create_op_node(op_desc))
4968 4969

    def create_op_node_from_desc(self, op_desc):
4970 4971 4972 4973 4974 4975 4976
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4977
            IrOpNode: the created operator node.
4978
        """
4979
        return IrOpNode(self.graph.create_op_node(op_desc))
4980 4981

    def update_input_link(self, old_input_node, new_input_node, op_node):
4982 4983 4984 4985
        """
        Update the input's link of a operator node.

        Args:
4986 4987 4988
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4989
        """
L
Ligoml 已提交
4990 4991 4992 4993 4994
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4995 4996 4997 4998
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4999
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
L
Ligoml 已提交
5010 5011 5012 5013 5014
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5015 5016 5017 5018 5019 5020
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5021
    def link_to(self, node_in, node_out):
5022 5023 5024 5025
        """
        Connect two nodes.

        Args:
5026 5027
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5028
        """
5029
        assert node_in.node in self.graph.nodes(), (
L
Ligoml 已提交
5030 5031
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5032
        assert node_out.node in self.graph.nodes(), (
L
Ligoml 已提交
5033 5034
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5035 5036
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5037 5038

    def safe_remove_nodes(self, remove_nodes):
5039 5040 5041 5042 5043 5044 5045
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5046
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5047 5048 5049 5050
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5051 5052
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5053

Z
Zhen Wang 已提交
5054 5055 5056 5057 5058 5059 5060 5061
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5062
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5063 5064 5065 5066
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5067
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5068 5069 5070
                        ]
                    else:
                        var_nodes[each_var_name].append(
L
Ligoml 已提交
5071 5072
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5073 5074
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5075
    def has_circle(self):
5076 5077 5078 5079 5080 5081
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5082 5083 5084
        return core.has_circle(self.graph)

    def graph_num(self):
5085 5086 5087 5088 5089 5090
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5091 5092 5093
        return core.graph_num(self.graph)

    def topology_sort(self):
5094 5095 5096
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5097
        Notes: the `graph` can not contain a circle.
5098 5099

        Returns:
Z
Zhen Wang 已提交
5100
            list(IrNode): nodes in topology order.
5101
        """
5102
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5103
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5104 5105

    def build_adjacency_list(self):
5106 5107 5108 5109
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5110
            dict{IrNode: set(IrNode)}: the adjacency list.
5111
        """
5112 5113 5114 5115 5116
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5117

5118 5119 5120 5121 5122 5123 5124 5125
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5126
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5127 5128 5129 5130 5131
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5132 5133
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
L
Ligoml 已提交
5134 5135 5136 5137
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5138 5139
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
L
Ligoml 已提交
5140 5141 5142
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5143

5144
        remove_ctr_vars = set()
5145
        if remove_ctr_var:
5146
            for node in self.all_var_nodes():
5147 5148 5149
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5150 5151
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5152 5153
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5154 5155 5156 5157 5158 5159
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5160 5161 5162 5163
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5164 5165
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5166 5167 5168 5169 5170 5171 5172
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5173 5174 5175
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5176
        WARN: When the graph includes backward operator nodes, the
5177 5178 5179 5180 5181 5182
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5183
        convert_pass = core.get_pass('graph_to_program_pass')
5184 5185
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5186 5187 5188 5189
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5190 5191 5192 5193 5194 5195 5196 5197
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5198
        assert target_node is not None, (
L
Ligoml 已提交
5199 5200
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5201 5202
        return target_node

5203 5204 5205 5206
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5207 5208 5209 5210 5211
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5212
            desc.set_block_attr(name, val.desc)
5213
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5214
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
5215 5216 5217
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5218 5219 5220 5221 5222
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
5223
class Program(object):
D
dzhwinter 已提交
5224
    """
5225
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5226
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5227
    it will contain nested block.
5228

J
Jiabin Yang 已提交
5229 5230 5231
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5232

J
Jiabin Yang 已提交
5233
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5234
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5235 5236 5237 5238 5239 5240 5241
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5242
    **Notes**:
5243 5244 5245
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5246 5247

    Returns:
J
Jiabin Yang 已提交
5248
        Program: An empty Program.
D
dzhwinter 已提交
5249 5250

    Examples:
5251 5252
        .. code-block:: python

5253 5254 5255 5256
            import paddle
            import paddle.static as static

            paddle.enable_static()
5257

5258 5259 5260 5261 5262
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5263
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5264 5265 5266

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5267 5268 5269

    """

5270 5271
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5272 5273
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5274 5275
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5276
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5277
        self.__op_role_var = []
T
tangwei12 已提交
5278

5279 5280
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5281
        self._is_distributed = False
5282
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5283
        self._is_chief = False
5284 5285 5286
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5287
        self._endpoints = []
5288 5289 5290
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5291
        self._trainers_endpoints = []
5292
        # the distributed lookup table names
T
tangwei12 已提交
5293
        self._distributed_lookup_table = None
5294 5295 5296

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5297 5298
        self._use_lamb = False

5299 5300 5301
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5302

5303 5304 5305
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5306
        self._program_config = None
5307

H
hutuxian 已提交
5308 5309 5310
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5311 5312 5313
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5314 5315 5316
        # appending gradients times
        self._appending_grad_times = 0

5317 5318
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
L
Ligoml 已提交
5319 5320
            "__auto_checkpoint_program__"
        )
5321

5322 5323
        # compiled program, i.e. Graph
        self._graph = None
5324 5325
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5326

5327
    def _find_var_class_kwargs(self, new_desc):
5328 5329 5330 5331 5332 5333 5334 5335
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5336 5337 5338 5339
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
L
Ligoml 已提交
5340
            if idx > (len(self.blocks) - 1):
5341
                self._create_block()
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
L
Ligoml 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5393 5394 5395
                }

                if isinstance(old_var, Parameter):
L
Ligoml 已提交
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5413 5414
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
L
Ligoml 已提交
5415 5416 5417 5418 5419 5420
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5421 5422 5423 5424 5425 5426 5427

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5428
        assert block_num == self.desc.num_blocks()
5429 5430

        # clear old blocks and desc
5431 5432 5433 5434 5435 5436 5437 5438 5439
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5440

5441
        del desc
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5471 5472
                import paddle
                import paddle.static as static
5473

5474 5475 5476
                paddle.enable_static()

                prog = static.default_main_program()
5477 5478 5479 5480 5481
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5482
                prog1 = static.default_main_program()
5483 5484 5485 5486 5487 5488 5489 5490
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5491
    @property
5492
    def _op_role(self):
Y
yuyang18 已提交
5493 5494 5495 5496 5497 5498 5499 5500
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5501
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5502 5503 5504 5505
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5506 5507
        return self._current_role

5508 5509
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5510 5511 5512
        self._current_role = role

    @property
5513
    def _op_role_var(self):
Y
yuyang18 已提交
5514
        """
5515
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5516

5517
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5518 5519 5520

        Notes: This is a very low-level API. Users should not use it directly.
        """
5521
        return self.__op_role_var
Y
yuyang18 已提交
5522

5523
    @signature_safe_contextmanager
5524 5525 5526 5527 5528
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5529 5530 5531 5532
        try:
            yield
        finally:
            self._current_role = tmp_role
5533

S
rename  
sneaxiy 已提交
5534
    @signature_safe_contextmanager
W
Wu Yi 已提交
5535
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5536 5537 5538 5539 5540 5541 5542
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5543
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5544 5545 5546

        Examples:

5547
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5548
            >>> p, g = backward(...)
W
Wu Yi 已提交
5549
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5550 5551
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5552
        tmp_role = self._current_role
5553
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5554

Y
yuyang18 已提交
5555 5556
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5557
        self.__op_role_var = [
5558 5559 5560
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5561 5562 5563 5564 5565
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5566

S
rename  
sneaxiy 已提交
5567
    @signature_safe_contextmanager
X
Xin Pan 已提交
5568
    def _lr_schedule_guard(self, is_with_opt=False):
5569 5570 5571 5572 5573 5574 5575
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5576 5577 5578 5579
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5580 5581 5582

        Examples:

5583
            >>> import paddle.fluid as fluid
5584 5585 5586 5587
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5588 5589

        tmp_role = self._current_role
5590
        tmp_var = self.__op_role_var
5591

5592 5593
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5594 5595
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5596
        # TODO(typhoonzero): how to set target learning rate var
5597
        self.__op_role_var = []
5598 5599 5600 5601 5602
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5603

5604
    def __str__(self):
Y
yuyang18 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5634 5635
            import paddle
            import paddle.static as static
5636

5637 5638 5639
            paddle.enable_static()

            cur_program = static.Program()
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5651
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
5652 5653
            type(skip_op_callstack)
        )
5654 5655 5656
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5657
            program_str += '\n'
5658
        return program_str
Y
Yang Yang(Tony) 已提交
5659

F
fengjiayi 已提交
5660 5661 5662
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5663

J
Jiabin Yang 已提交
5664 5665 5666
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5667

J
Jiabin Yang 已提交
5668
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5669

H
haowang101779990 已提交
5670
        Returns:
J
Jiabin Yang 已提交
5671
            str: The debug string describe current Program.
Y
yuyang18 已提交
5672 5673

        Raises:
J
Jiabin Yang 已提交
5674
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5675

5676 5677 5678
        Examples:
            .. code-block:: python

5679 5680 5681 5682
                import paddle
                import paddle.static as static

                paddle.enable_static()
5683

5684 5685 5686
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5687
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5688
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5689
                print("program string without detail: {}".format(prog_string))
5690
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5691
        """
5692 5693 5694
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5695 5696
            type(throw_on_error)
        )
5697 5698 5699
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5700 5701
            type(with_details)
        )
5702

F
fengjiayi 已提交
5703 5704 5705 5706 5707 5708
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5709
            proto = framework_pb2.ProgramDesc.FromString(
L
Ligoml 已提交
5710 5711
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
5712 5713
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5714

W
Wu Yi 已提交
5715
    def _get_desc(self):
Y
yuyang18 已提交
5716 5717 5718 5719 5720 5721 5722
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5723 5724
        return self.desc

X
version  
Xin Pan 已提交
5725 5726 5727
    def _version(self):
        return self.desc._version()

5728
    def clone(self, for_test=False):
Y
yuyang18 已提交
5729
        """
5730
        .. note:::
L
Ligoml 已提交
5731 5732
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5733
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5734

5735
        Create a new Program with forward content of original one when ``for_test=True``.
5736
        Create a new Program as same as the original one when ``for_test=False``.
5737

5738
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5739 5740 5741
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5742

5743 5744
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5745 5746
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5747
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5748

J
Jiabin Yang 已提交
5749
        For Example:
5750
          ::
L
Luo Tao 已提交
5751

5752 5753 5754 5755 5756 5757
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5758
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5759
            loss = paddle.mean(pred)
5760
            # Here we use clone before Momentum
5761 5762
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5763
            optimizer.minimize(loss)
5764

J
Jiabin Yang 已提交
5765
        Args:
5766

5767 5768
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5769

J
Jiabin Yang 已提交
5770
        Returns:
5771
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5772

Y
yuyang18 已提交
5773 5774 5775

        Examples:

5776 5777 5778 5779 5780 5781 5782
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5799
            1. To clone a test program, the sample code is:
5800 5801 5802
                .. code-block:: python

                    import six
5803 5804 5805 5806 5807 5808
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5821 5822
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5823 5824 5825

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5826 5827 5828
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5829
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5830 5831
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5832
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5833 5834
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5835
                            test_program = train_program.clone(for_test=True)
5836
                    print_prog(test_program)
J
Jiabin Yang 已提交
5837 5838 5839 5840

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5841
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5842 5843 5844 5845
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5846 5847 5848
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5849 5850 5851
                            sgd.minimize(avg_loss)


5852
            2. The clone method can be avoid if you create program for training and program for testing individually.
5853 5854 5855
                .. code-block:: python

                    import six
5856 5857 5858 5859 5860 5861
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5873

5874
                    def network():
5875
                        img = static.data(name='image', shape=[None, 784])
5876
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5877 5878
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5879
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5880 5881
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5882 5883
                        return avg_loss

5884 5885 5886 5887 5888
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5889
                            avg_loss = network()
5890
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5891
                            sgd.minimize(avg_loss)
5892
                    # the test startup program is not used.
5893 5894
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5895 5896
                            avg_loss = network()
                    print_prog(test_program_2)
5897

5898
            The two code snippets above will generate and print same programs.
5899
        """
5900

T
tangwei12 已提交
5901
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5902 5903 5904
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5905
        pruned_origin_block_id_map = None
5906
        if for_test:
5907 5908
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
L
Ligoml 已提交
5909 5910
                self.desc
            )
5911 5912 5913 5914 5915 5916
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5917
        else:
5918
            p = Program()
G
gongweibao 已提交
5919 5920
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5921
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5922 5923 5924
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5925 5926

            p._current_role = self._current_role
5927
            p.__op_role_var = self.__op_role_var
5928
            p._appending_grad_times = self._appending_grad_times
5929 5930
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5931

T
tangwei12 已提交
5932
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5933
            # its desc.
W
Wu Yi 已提交
5934
            p._sync_with_cpp()
5935

W
Wu Yi 已提交
5936
        p._copy_param_info_from(self)
5937
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5938
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5939
        return p
5940

5941
    def _prune(self, targets):
Y
yuyang18 已提交
5942 5943 5944 5945 5946 5947 5948 5949
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5950
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5951 5952 5953 5954
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5955
        """
5956
        return self._prune_with_input([], targets)
5957 5958

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5959
        """
5960
        Prune operators and variables which are not needed to generate
L
Ligoml 已提交
5961 5962
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5963 5964 5965 5966 5967 5968 5969

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5970
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5971 5972 5973 5974 5975 5976
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5977
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5978 5979 5980
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5981 5982
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5983 5984
        if not isinstance(targets, list):
            targets = [targets]
5985 5986 5987

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5988 5989
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
L
Ligoml 已提交
5990 5991
                    "str, but received %s." % type(var)
                )
5992

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6009 6010 6011 6012
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6013 6014 6015
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
6016
                else:
6017 6018
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
L
Ligoml 已提交
6019 6020
                        "Variable or Operator, but received %s." % type(t)
                    )
6021 6022 6023 6024 6025 6026

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6027 6028 6029
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6030

6031 6032 6033 6034 6035 6036 6037 6038 6039
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6040
                        # Skip optimize op except for optimize op in targets,
6041 6042 6043 6044 6045
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6046

6047
                if target_op is not None:
6048 6049 6050
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6051

6052
        res = Program()
6053
        res.desc, pruned_origin_block_id_map = core.prune(
L
Ligoml 已提交
6054 6055
            self.desc, set(feeded_var_names), targets_idx
        )
M
minqiyang 已提交
6056 6057 6058
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6059
        res._sync_with_cpp()
6060 6061 6062 6063 6064

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6065 6066
        return res

X
Xin Pan 已提交
6067
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6068
        """
F
fengjiayi 已提交
6069 6070 6071 6072 6073
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6074
        3. change the :code:`is_test`
Y
yuyang18 已提交
6075 6076 6077
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6078
        Args:
X
Xin Pan 已提交
6079 6080
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6081

Y
yuyang18 已提交
6082 6083 6084 6085 6086 6087
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6088
        res = Program()
6089
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6090 6091 6092 6093

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6094
        if prune_read_op:
6095
            while True:
L
Ligoml 已提交
6096 6097 6098 6099
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6100 6101 6102 6103 6104 6105
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
6106
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
6107 6108

        # change all `is_test` attributes to True
M
minqiyang 已提交
6109
        for i in six.moves.range(res.desc.num_blocks()):
6110
            block = res.desc.block(i)
M
minqiyang 已提交
6111
            for j in six.moves.range(block.op_size()):
6112 6113
                op = block.op(j)
                if op.has_attr('is_test'):
6114
                    op._set_bool_attr('is_test', True)
6115 6116 6117
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
6118 6119 6120
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6121
        res._sync_with_cpp()
6122 6123
        return res

6124
    def _remove_training_info(self, clip_extra=True):
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

6144 6145
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6146
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6147

6148 6149 6150 6151 6152
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6153 6154
            if not clip_extra:
                continue
6155 6156 6157 6158
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6159 6160 6161

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6175 6176 6177
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6191 6192 6193
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
6194

L
Ligoml 已提交
6195 6196 6197 6198 6199 6200 6201
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6202 6203
                )
                quant_attrs = [
L
Ligoml 已提交
6204 6205 6206 6207 6208 6209 6210
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6211
                ]
6212 6213 6214
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
                remove_attr_list = []
6215 6216 6217 6218 6219 6220
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6221
                    if len(extra_attrs_map) > 0:
6222
                        if name in common_clipped_attrs_list:
6223
                            op.remove_attr(name)
6224
                        continue
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6235 6236
        return res

6237 6238
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6239
        """
6240
        .. note::
L
Ligoml 已提交
6241
            1. All information about parameters will be lost after serialization;
6242
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6243

6244 6245
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6246

J
Jiabin Yang 已提交
6247
        Args:
Y
yuyang18 已提交
6248

J
Jiabin Yang 已提交
6249
            binary_str_type (str): the binary prootbuf string.
6250

J
Jiabin Yang 已提交
6251 6252
        Returns:
            Program: A deserialized Program.
6253 6254 6255 6256

        Examples:
            .. code-block:: python

6257 6258 6259 6260
                import paddle
                import paddle.static as static

                paddle.enable_static()
6261

6262 6263 6264 6265
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6266

6267
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6268

6269
                    z = paddle.matmul(x=x, y=y)
6270

6271 6272
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6273

6274
                    print(static.default_main_program())
6275
                    print(prog_restored)
Y
yuyang18 已提交
6276
        """
6277 6278
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6279
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6280
        p._sync_with_cpp()
6281
        return p
Y
Yu Yang 已提交
6282

6283
    @staticmethod
6284
    def _construct_from_desc(desc):
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6300 6301
    @property
    def random_seed(self):
Y
yuyang18 已提交
6302
        """
J
Jiabin Yang 已提交
6303
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6304 6305
        the random seed from random device.

L
Ligoml 已提交
6306
        .. note::
6307
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6308 6309 6310

        Returns:
            int64: Random seed in current Program
6311

6312 6313 6314 6315

        Examples:
            .. code-block:: python

6316 6317 6318
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6319

6320 6321 6322
                paddle.enable_static()

                prog = static.default_main_program()
6323
                random_seed = prog.random_seed
6324
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6325 6326 6327
                print(random_seed)
                ## 0
                ## the default random seed is 0
6328

6329
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6330
                prog.random_seed = 1
6331
                z_var = F.dropout(x_var, 0.7)
6332

6333
                print(prog.random_seed)
6334 6335
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6336
        """
D
dzhwinter 已提交
6337 6338
        return self._seed

Q
qiaolongfei 已提交
6339 6340
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6341
        """
6342 6343
        The number of :ref:`api_guide_Block_en`  in this Program.

L
Ligoml 已提交
6344
        .. note::
6345
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6346 6347 6348

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6349

6350 6351 6352 6353

        Examples:
            .. code-block:: python

6354 6355 6356 6357
                import paddle
                import paddle.static as static

                paddle.enable_static()
6358

6359
                prog = static.default_main_program()
6360 6361
                num_blocks = prog.num_blocks
                print(num_blocks)
6362

6363 6364
                # print result:
                # 1
Y
yuyang18 已提交
6365
        """
Q
qiaolongfei 已提交
6366 6367
        return self.desc.num_blocks()

D
dzhwinter 已提交
6368 6369 6370
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6371 6372
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
L
Ligoml 已提交
6373 6374
                % type(seed)
            )
D
dzhwinter 已提交
6375 6376
        self._seed = seed

Y
Yu Yang 已提交
6377
    def __repr__(self):
6378
        return self.__str__()
6379

Y
Yu Yang 已提交
6380
    def global_block(self):
Y
yuyang18 已提交
6381
        """
6382 6383
        .. note::
            This API has no effect in Dygraph mode.
6384 6385 6386

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6387 6388
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6389

6390 6391 6392 6393

        Examples:
            .. code-block:: python

6394 6395 6396 6397
                import paddle
                import paddle.static as static

                paddle.enable_static()
6398

6399
                prog = static.default_main_program()
6400 6401
                gb_block = prog.global_block()
                print(gb_block)
6402

Y
yuyang18 已提交
6403
        """
Y
Yu Yang 已提交
6404 6405
        return self.blocks[0]

Q
Qiao Longfei 已提交
6406
    def block(self, index):
Y
yuyang18 已提交
6407
        """
6408 6409
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6410

6411 6412
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6413 6414
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6415

J
Jiabin Yang 已提交
6416 6417
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6418 6419 6420 6421

        Examples:
            .. code-block:: python

6422 6423 6424 6425
                import paddle
                import paddle.static as static

                paddle.enable_static()
6426

6427
                prog = static.default_main_program()
6428 6429
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6430
        """
Q
Qiao Longfei 已提交
6431 6432
        return self.blocks[index]

Y
Yu Yang 已提交
6433
    def current_block(self):
Y
yuyang18 已提交
6434
        """
6435 6436
        .. note::
            This API has no effect in Dygraph mode.
6437

J
Jiabin Yang 已提交
6438 6439
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6440

J
Jiabin Yang 已提交
6441 6442
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6443

6444 6445 6446
        Examples:
            .. code-block:: python

6447 6448 6449 6450
                import paddle
                import paddle.static as static

                paddle.enable_static()
6451

6452
                prog = static.default_main_program()
6453 6454
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6455
        """
Y
Yu Yang 已提交
6456 6457
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6458
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6459 6460 6461 6462 6463
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6464

Y
yuyang18 已提交
6465 6466 6467 6468 6469
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6470
        new_block_idx = len(self.blocks)
L
Ligoml 已提交
6471 6472 6473 6474 6475
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6476
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6477 6478 6479 6480
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6481
    def _rollback(self):
Y
yuyang18 已提交
6482 6483 6484 6485 6486
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6487 6488
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6489
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6500 6501 6502
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6503
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6504

W
Wu Yi 已提交
6505
    def _copy_param_info_from(self, other):
6506
        """
6507
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6508

Y
yuyang18 已提交
6509 6510 6511
        Notes: This is a very low level API. Users should not invoke it
        directly.

6512 6513 6514 6515 6516 6517 6518
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6519 6520
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6521 6522
                % type(other)
            )
6523

W
Wu Yi 已提交
6524
        self.global_block()._copy_param_info_from(other.global_block())
6525

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6537 6538
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6539 6540
                % type(other)
            )
6541 6542
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6543
        self._parameters_on_pservers = other._parameters_on_pservers
6544
        self._endpoints = other._endpoints
6545
        self._ps_endpoint = other._ps_endpoint
6546 6547
        self._distributed_lookup_table = other._distributed_lookup_table

6548
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6549 6550
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6551

Y
yuyang18 已提交
6552 6553 6554
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6555 6556
        Args:
            other(Program): Other program
6557
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
L
Ligoml 已提交
6558 6559
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6560
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6561 6562 6563 6564 6565

        Returns:
            None
        """
        if not isinstance(other, Program):
6566 6567
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6568 6569
                % type(other)
            )
F
fengjiayi 已提交
6570

6571 6572
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
L
Ligoml 已提交
6573
                i: i for i in six.moves.range(self.desc.num_blocks())
6574
            }
6575 6576 6577

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6578 6579
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6580
            for var in list(block.vars.values()):
6581 6582 6583 6584 6585 6586 6587
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6588

6589
    def list_vars(self):
Y
yuyang18 已提交
6590
        """
6591
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6592

J
Jiabin Yang 已提交
6593
        Returns:
6594
            iterable Tensors: The Generator will yield every Tensor in this program.
6595 6596 6597 6598

        Examples:
            .. code-block:: python

6599 6600
                import paddle
                import paddle.static as static
6601

6602 6603 6604 6605 6606
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6607 6608
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6609

6610 6611
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6612
        """
6613
        for each_block in self.blocks:
6614
            for each_var in list(each_block.vars.values()):
6615 6616
                yield each_var

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6627 6628 6629 6630
                import paddle
                import paddle.static as static

                paddle.enable_static()
6631

6632 6633
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6634
                hidden = static.nn.fc(x=data, size=10)
6635 6636
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6637 6638 6639 6640 6641 6642 6643

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6644 6645
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6656 6657 6658 6659 6660 6661 6662 6663 6664
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6665 6666 6667
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6668 6669
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
L
Ligoml 已提交
6670
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6698
        # can not be imported at the begainning of this file.
6699 6700
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
6701

6702 6703
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
6704 6705 6706 6707
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6708 6709 6710 6711 6712

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6713 6714
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
L
Ligoml 已提交
6715 6716 6717
                    type(mode)
                )
            )
6718 6719 6720 6721 6722

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
L
Ligoml 已提交
6723 6724 6725 6726 6727
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
L
Ligoml 已提交
6746 6747 6748 6749
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6750 6751 6752 6753 6754 6755 6756 6757

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
L
Ligoml 已提交
6758 6759 6760 6761
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6762 6763 6764 6765 6766 6767
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
L
Ligoml 已提交
6768
        Set parameters and persistable buffers in state_dict to program.
6769
        An exception will throw if shape or dtype of the parameters is not match.
L
Ligoml 已提交
6770

6771 6772 6773 6774
        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6775
            state_dict(dict): the dict store parameters and persistable buffers.
6776 6777
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
L
Ligoml 已提交
6778
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6779 6780
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
L
Ligoml 已提交
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
L
Ligoml 已提交
6811 6812 6813
                    type(state_dict)
                )
            )
6814 6815

        vars_dict = {var.name: var for var in self.list_vars()}
L
Ligoml 已提交
6816 6817 6818
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
L
Ligoml 已提交
6830 6831
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6832 6833
                except TypeError as err:
                    warnings.warn(
L
Ligoml 已提交
6834 6835
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6836
            else:
6837
                warnings.warn(
L
Ligoml 已提交
6838 6839 6840 6841 6842 6843
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6844

Y
Yu Yang 已提交
6845

6846
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6847
class Parameter(Variable):
6848
    """
6849
    Parameter is derived from Variable. A parameter is a persistable
6850
    Variable, and will be updated by optimizers after each iteration.
6851
    The training of a neural network is essentially the updating of
6852 6853
    its parameters.

6854
    Relative to a general Variable, a Parameter has several its own
6855 6856
    member variables:

6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
L
Ligoml 已提交
6867
        need_clip (bool): Whether the parameter gradient need to be cliped
6868
            in optimizer. Default is True.
6869 6870
    """

L
Ligoml 已提交
6871 6872 6873 6874 6875 6876 6877 6878
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6879 6880 6881 6882 6883
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6884
        if len(shape) == 0:
6885
            raise ValueError(
L
Ligoml 已提交
6886 6887
                "The dimensions of shape for Parameter must be greater than 0"
            )
Y
Yu Yang 已提交
6888 6889 6890

        for each in shape:
            if each < 0:
6891 6892
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6905 6906 6907 6908
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6909 6910
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6911
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6912

6913 6914
        self.need_clip = kwargs.get('need_clip', True)

6915 6916
        self.is_distributed = False

6917 6918
        self.is_parameter = True

F
fengjiayi 已提交
6919
    def __str__(self):
6920
        return self._to_readable_code()
F
fengjiayi 已提交
6921

F
update  
fengjiayi 已提交
6922 6923 6924
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6925

F
update  
fengjiayi 已提交
6926 6927 6928 6929 6930 6931 6932 6933
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6934 6935 6936 6937 6938 6939 6940 6941 6942
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6943
        """
6944
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
6945 6946
            with_details, bool
        )
F
update  
fengjiayi 已提交
6947 6948
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
L
Ligoml 已提交
6949 6950 6951 6952 6953 6954 6955
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6956
            for attr_name in additional_attr:
L
Ligoml 已提交
6957 6958 6959 6960
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
F
update  
fengjiayi 已提交
6961 6962
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6963 6964 6965 6966
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6967

6968 6969
class ParamBase(core.VarBase):
    """
L
Ligoml 已提交
6970 6971
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6972
    after each iteration.
6973 6974 6975
    The training of a neural network is essentially the updating of
    its ParamBase.

6976
    Relative to a general Tensor, a ParamBase has several its own
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
L
Ligoml 已提交
6989
        need_clip (bool): Whether the parameter gradient need to be cliped
6990
            in optimizer. Default is True.
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
7002 7003
                "The dimensions of shape for Parameter must be greater than 0"
            )
7004 7005 7006 7007 7008

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7009 7010
                    % list(shape)
                )
7011 7012 7013 7014 7015 7016 7017

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

L
Ligoml 已提交
7018 7019 7020 7021 7022 7023 7024
        super(ParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7025

7026 7027
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7028 7029 7030 7031 7032 7033 7034

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7035 7036
        self.need_clip = kwargs.get('need_clip', True)

7037
        self.is_distributed = kwargs.get('is_distributed', False)
7038
        # self.block = default_main_program().global_block()
7039

7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7051 7052
                type(trainable),
            )
7053

7054
    def __str__(self):
7055
        """
7056
        Convert a ParamBase object to a readable string.
7057

7058
        Returns(str): A readable string.
7059 7060 7061 7062

        Examples:
            .. code-block:: python

7063
                import paddle
7064 7065 7066 7067 7068 7069 7070
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7071
        """
7072
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7073 7074
            tensor=super(ParamBase, self).__str__()
        )
7075

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7087

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7106 7107 7108 7109
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7110 7111 7112 7113 7114 7115
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7116
    _core_eager_eagertensor = core.eager.Tensor
7117 7118 7119 7120 7121 7122
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
L
Ligoml 已提交
7123 7124
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
L
Ligoml 已提交
7142
        need_clip (bool): Whether the parameter gradient need to be cliped
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
7155 7156
                "The dimensions of shape for Parameter must be greater than 0"
            )
7157 7158 7159 7160 7161

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7162 7163
                    % list(shape)
                )
7164 7165 7166 7167 7168 7169 7170

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7171 7172 7173
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

L
Ligoml 已提交
7174 7175 7176 7177 7178 7179 7180
        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7195 7196 7197
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7198 7199

    def set_init_func(self, obj):
7200
        self._init_func = obj
7201 7202 7203

    @dygraph_only
    def initialize(self):
L
Ligoml 已提交
7204 7205 7206
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7207
        self._init_func()
7208
        # clear function handle to release resource
7209
        self._init_func = None
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7222 7223
                type(trainable),
            )
7224

7225 7226 7227 7228
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
L
Ligoml 已提交
7229 7230 7231
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7232 7233
        self._init_op_creator(block)

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7253 7254
            tensor=super(EagerParamBase, self).__str__()
        )
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7290 7291
        return new_param

7292 7293 7294
    __repr__ = __str__


Y
Yu Yang 已提交
7295
# program is a global instance.
Y
Yu Yang 已提交
7296 7297
_main_program_ = Program()
_startup_program_ = Program()
7298
_startup_program_._is_start_up_program_ = True
7299

7300

7301
def default_startup_program():
Y
Yu Yang 已提交
7302
    """
Y
yuyang18 已提交
7303 7304
    Get default/global startup program.

7305
    The :code:`paddle.nn` function will append the initialization operators into startup program.
L
Ligoml 已提交
7306
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7307

7308 7309
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7310

7311 7312
    Returns:
        Program: current default startup program.
7313

L
Ligoml 已提交
7314
    Returns type:
7315 7316 7317 7318

    Examples:
        .. code-block:: python

7319
            import paddle
7320

7321
            paddle.enable_static()
7322 7323 7324 7325
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7326
    """
Y
Yu Yang 已提交
7327
    return _startup_program_
7328

7329

7330
def default_main_program():
Y
Yu Yang 已提交
7331
    """
L
Ligoml 已提交
7332
    This API can be used to get ``default main program`` which store the
7333
    descriptions of Ops and tensors.
T
tangwei12 已提交
7334

L
Ligoml 已提交
7335 7336
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7337

L
Ligoml 已提交
7338
    The ``default main program`` is the default value for ``Program`` parameter in
7339
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7340
    :code:`default_main_program` when the program is not specified.
7341

7342
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7343

Y
Yu Yang 已提交
7344
    Returns:
7345
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7346 7347 7348 7349

    Examples:
        ..  code-block:: python

7350
            import paddle
7351

7352
            paddle.enable_static()
7353
            # Sample Network:
7354 7355 7356
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7357

7358 7359 7360
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7361
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7362
    """
Y
Yu Yang 已提交
7363
    return _main_program_
Y
Yu Yang 已提交
7364 7365 7366 7367 7368


def switch_main_program(program):
    """
    Switch the main program to a new program.
7369

Y
Yu Yang 已提交
7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7384
    Switch the startup program to a new program
Y
Yu Yang 已提交
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7397
@signature_safe_contextmanager
Y
Yu Yang 已提交
7398 7399
def program_guard(main_program, startup_program=None):
    """
7400 7401
    :api_attr: Static Graph

7402 7403 7404
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7405

G
guofei 已提交
7406
    Args:
7407
        main_program(Program): New main program inside ``with`` statement.
L
Ligoml 已提交
7408 7409
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7410 7411 7412
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7413
    Examples:
7414
       .. code-block:: python
T
tangwei12 已提交
7415

7416
          import paddle
Y
yuyang18 已提交
7417

7418 7419 7420 7421 7422
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7423
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7424 7425 7426

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7427

Y
Yu Yang 已提交
7428
    Examples:
7429
       .. code-block:: python
Y
yuyang18 已提交
7430

7431
          import paddle
7432

7433 7434 7435 7436 7437
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7438

Y
Yu Yang 已提交
7439
    """
7440
    from .data_feeder import check_type
L
Ligoml 已提交
7441 7442 7443 7444

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7445 7446
    main_program = switch_main_program(main_program)
    if startup_program is not None:
L
Ligoml 已提交
7447 7448 7449 7450 7451 7452
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7453 7454
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7455
        startup_program = switch_startup_program(startup_program)
7456 7457 7458 7459 7460 7461
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7462 7463


W
Wu Yi 已提交
7464
def _get_var(name, program=None):
X
xuwei06 已提交
7465
    """
Y
yuyang18 已提交
7466
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7467

X
xuwei06 已提交
7468 7469 7470
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7471
        If None, default_global_program() will be used.
X
xuwei06 已提交
7472 7473 7474 7475 7476 7477 7478

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7479
    assert isinstance(program, Program)
X
xuwei06 已提交
7480 7481

    return program.global_block().var(name)
7482 7483


S
rename  
sneaxiy 已提交
7484
@signature_safe_contextmanager
L
lujun 已提交
7485 7486
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7487
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7488
    _dygraph_tracer_ = tracer
7489
    core._switch_tracer(tracer)
M
minqiyang 已提交
7490

7491 7492 7493
    try:
        yield
    finally:
7494 7495
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7496 7497


S
rename  
sneaxiy 已提交
7498
@signature_safe_contextmanager
L
lujun 已提交
7499
def _dygraph_place_guard(place):
7500 7501 7502
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7503 7504
    _set_dygraph_tracer_expected_place(place)

7505 7506 7507
    try:
        yield
    finally:
7508
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7509
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7510 7511


7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
L
Ligoml 已提交
7522

7523 7524
    Note:
        The API only supports static mode.
7525 7526 7527 7528

    A context manager that specifies the device on which the OP will be placed.

    Args:
7529
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
L
Ligoml 已提交
7530
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7531 7532 7533 7534 7535 7536 7537
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
L
Ligoml 已提交
7538

7539
        .. code-block:: python
L
Ligoml 已提交
7540

7541
            # required: gpu
Z
Zhang Ting 已提交
7542
            import paddle
7543

Z
Zhang Ting 已提交
7544 7545 7546
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7547
            if support_gpu:
Z
Zhang Ting 已提交
7548
                place = paddle.CUDAPlace(0)
7549 7550

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7551 7552 7553
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7554

Z
Zhang Ting 已提交
7555
            with paddle.static.device_guard("cpu"):
7556
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7557 7558
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7559
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7560
                out = paddle.reshape(data1, shape=shape)
7561

Z
Zhang Ting 已提交
7562 7563
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7564 7565 7566
            result = exe.run(fetch_list=[out])
    """

7567 7568 7569 7570 7571
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7572
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7573
        raise ValueError(
7574
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
L
Ligoml 已提交
7575 7576
            "when there is no need to specify device. But received %s" % device
        )
7577 7578
    if index:
        device = ":".join([device, index])
7579
    pre_device = switch_device(device)
7580 7581 7582 7583
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7584 7585


7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
L
Ligoml 已提交
7606 7607
    assert (
        not _non_static_mode()
7608
    ), "cuda_graph_guard only works under static mode"
L
Ligoml 已提交
7609 7610
    assert (
        core.is_compiled_with_cuda()
7611 7612 7613 7614 7615 7616 7617 7618
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7619 7620 7621
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7622
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7623 7624 7625 7626 7627 7628 7629

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7630 7631
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7632 7633 7634 7635
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7636 7637
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7638 7639
        else:
            raise ValueError(
L
Ligoml 已提交
7640 7641
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7642 7643 7644 7645 7646


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7647
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7658
            import paddle
G
guofei 已提交
7659 7660

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7661
            res = paddle.get_flags(flags)
G
guofei 已提交
7662 7663 7664 7665 7666 7667
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
L
Ligoml 已提交
7668
            if _global_flags().is_public(key):
7669
                value = _global_flags()[key]
G
guofei 已提交
7670 7671 7672 7673
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
L
Ligoml 已提交
7674 7675 7676
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7677
    elif isinstance(flags, str):
L
Ligoml 已提交
7678
        if _global_flags().is_public(flags):
7679
            value = _global_flags()[flags]
G
guofei 已提交
7680 7681 7682 7683
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
L
Ligoml 已提交
7684 7685
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7686 7687 7688
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7689 7690 7691 7692 7693 7694


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
L
Ligoml 已提交
7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7709 7710 7711 7712
        return place

    if not isinstance(place, str):
        raise ValueError(
L
Ligoml 已提交
7713 7714
            "place only support string which is 'Place' and so on."
        )
7715 7716

    place = place.lower()
L
Ligoml 已提交
7717
    if place == "cpu":
7718
        return core.CPUPlace()
7719

L
Ligoml 已提交
7720
    if place == "device":
7721 7722
        return core.Place()

7723
    # GPU
7724 7725 7726 7727
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
L
Ligoml 已提交
7728 7729 7730
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7731 7732 7733 7734 7735 7736 7737 7738 7739
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7740 7741

    # XPU
7742 7743 7744 7745
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
L
Ligoml 已提交
7746 7747 7748
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7749 7750 7751 7752
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7753 7754 7755 7756 7757 7758

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
L
Ligoml 已提交
7759 7760 7761
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7762 7763 7764 7765 7766
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7767 7768 7769 7770 7771
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
L
Ligoml 已提交
7772 7773 7774
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7775 7776 7777 7778 7779
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7780 7781 7782 7783 7784
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
L
Ligoml 已提交
7785 7786 7787
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7788 7789 7790 7791 7792
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7793
    raise ValueError(
L
Ligoml 已提交
7794 7795 7796 7797
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret