test_rnn_nets.py 13.0 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16

F
Feiyu Chan 已提交
17 18 19
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask

20
import os
F
Feiyu Chan 已提交
21 22
import numpy as np
import unittest
23
import tempfile
F
Feiyu Chan 已提交
24 25 26 27

from convert import convert_params_for_net
from rnn_numpy import SimpleRNN, LSTM, GRU

28 29
bidirectional_list = ["bidirectional", "bidirect"]

F
Feiyu Chan 已提交
30 31

class TestSimpleRNN(unittest.TestCase):
32

F
Feiyu Chan 已提交
33 34 35 36
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestSimpleRNN, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
37
        self.num_directions = 2 if direction in bidirectional_list else 1
38
        self.place = place
F
Feiyu Chan 已提交
39 40

    def setUp(self):
41 42 43 44
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
45 46 47 48 49 50 51 52 53 54
        rnn1 = SimpleRNN(16,
                         32,
                         2,
                         time_major=self.time_major,
                         direction=self.direction)
        rnn2 = paddle.nn.SimpleRNN(16,
                                   32,
                                   2,
                                   time_major=self.time_major,
                                   direction=self.direction)
F
Feiyu Chan 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
70
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
71 72 73 74 75 76 77 78 79 80 81 82
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
83
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

98
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
99 100 101
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
102
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
103 104
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
105 106 107 108

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
109 110 111
    def test_predict(self):
        predict_test_util(self.place, "SimpleRNN")

F
Feiyu Chan 已提交
112 113 114 115
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
116
        self.test_predict()
F
Feiyu Chan 已提交
117 118 119


class TestGRU(unittest.TestCase):
120

F
Feiyu Chan 已提交
121 122 123 124
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestGRU, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
125
        self.num_directions = 2 if direction in bidirectional_list else 1
126
        self.place = place
F
Feiyu Chan 已提交
127 128

    def setUp(self):
129 130 131 132
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        rnn1 = GRU(16,
                   32,
                   2,
                   time_major=self.time_major,
                   direction=self.direction)
        rnn2 = paddle.nn.GRU(16,
                             32,
                             2,
                             time_major=self.time_major,
                             direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
158
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
159 160 161 162 163 164 165 166 167 168 169 170
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
171
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

186
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
187 188 189
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
190
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
191 192
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
193 194 195 196

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
197 198 199
    def test_predict(self):
        predict_test_util(self.place, "GRU")

F
Feiyu Chan 已提交
200 201 202 203
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
204
        self.test_predict()
F
Feiyu Chan 已提交
205 206 207


class TestLSTM(unittest.TestCase):
208

F
Feiyu Chan 已提交
209 210 211 212
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestLSTM, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
213
        self.num_directions = 2 if direction in bidirectional_list else 1
214
        self.place = place
F
Feiyu Chan 已提交
215 216

    def setUp(self):
217 218 219 220
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
221 222 223 224 225 226 227 228 229 230
        rnn1 = LSTM(16,
                    32,
                    2,
                    time_major=self.time_major,
                    direction=self.direction)
        rnn2 = paddle.nn.LSTM(16,
                              32,
                              2,
                              time_major=self.time_major,
                              direction=self.direction)
F
Feiyu Chan 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)
        prev_c = np.random.randn(2 * self.num_directions, 4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
247 248 249
        y2, (h2,
             c2) = rnn2(paddle.to_tensor(x),
                        (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)))
F
Feiyu Chan 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (h1, c1) = rnn1(x)
263
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (h1, c1) = rnn1(x, sequence_length=sequence_length)

279
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
280 281 282
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
283
        y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
284 285
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
286 287 288 289 290

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

291
    def test_predict(self):
G
Guo Sheng 已提交
292
        predict_test_util(self.place, "LSTM")
293
        predict_test_util(self.place, "LSTM", False)
294

F
Feiyu Chan 已提交
295 296 297 298
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
299
        self.test_predict()
F
Feiyu Chan 已提交
300 301


302
def predict_test_util(place, mode, stop_gradient=True):
G
Guo Sheng 已提交
303 304 305 306 307
    place = paddle.set_device(place)
    paddle.seed(123)
    np.random.seed(123)

    class Net(paddle.nn.Layer):
308

G
Guo Sheng 已提交
309 310 311 312 313 314 315 316 317 318 319 320
        def __init__(self):
            super(Net, self).__init__()
            self.rnn = getattr(paddle.nn, mode)(16,
                                                32,
                                                2,
                                                direction="bidirectional",
                                                dropout=0.1)

        def forward(self, input):
            return self.rnn(input)

    x = paddle.randn((4, 10, 16))
321
    x.stop_gradient = stop_gradient
G
Guo Sheng 已提交
322 323 324 325 326 327 328 329
    seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
    mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
    mask = paddle.unsqueeze(mask, [2])
    rnn = Net()
    y, _ = rnn(x)
    y = y * mask
    loss = paddle.mean(y)
    loss.backward()
330 331
    optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                                      parameters=rnn.parameters())
G
Guo Sheng 已提交
332 333 334 335 336 337 338 339
    optimizer.step()
    rnn.eval()
    y, _ = rnn(x)
    # `jit.to_static` would include a train_program, eval mode might cause
    # some errors currently, such as dropout grad op gets `is_test == True`.
    rnn.train()

    rnn = paddle.jit.to_static(
340
        rnn, [paddle.static.InputSpec(shape=[None, None, 16], dtype=x.dtype)])
341 342 343 344
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(temp_dir.name, "./inference/%s_infer" % mode)

    paddle.jit.save(rnn, save_dirname)
G
Guo Sheng 已提交
345 346 347 348 349 350

    paddle.enable_static()

    new_scope = paddle.static.Scope()
    with paddle.static.scope_guard(new_scope):
        exe = paddle.static.Executor(place)
351 352
        [inference_program, feed_target_names,
         fetch_targets] = paddle.static.load_inference_model(save_dirname, exe)
G
Guo Sheng 已提交
353 354 355 356 357 358 359
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: x.numpy()},
                          fetch_list=fetch_targets)
        np.testing.assert_equal(
            y.numpy(), results[0])  # eval results equal predict results
    paddle.disable_static()

360 361
    temp_dir.cleanup()

G
Guo Sheng 已提交
362

F
Feiyu Chan 已提交
363 364 365 366
def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
367
    for direction in ["forward", "bidirectional", "bidirect"]:
F
Feiyu Chan 已提交
368 369 370 371 372
        for time_major in [True, False]:
            for device in devices:
                for test_class in [TestSimpleRNN, TestLSTM, TestGRU]:
                    suite.addTest(test_class(time_major, direction, device))
    return suite
373

374

375 376
if __name__ == '__main__':
    unittest.main()