operator.h 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22
#include <unordered_map>
#include <vector>
D
dzhwinter 已提交
23 24
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
Q
Qiao Longfei 已提交
25

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
38 39 40 41

namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53 54

/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64 65 66 67
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
68
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
69 70
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
71

Q
Qiao Longfei 已提交
72
class OperatorBase;
73
class ExecutionContext;
74

Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
83 84
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
85

Q
Qiao Longfei 已提交
86 87
  virtual ~OperatorBase() {}

88
  /// Executor will call this interface function to Run an op.
89 90
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
91

T
typhoonzero 已提交
92 93 94
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

95 96 97
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
98

99 100
  virtual bool SupportGPU() const { return false; }

101 102 103 104 105 106 107 108 109
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
110

Y
Yu Yang 已提交
111 112
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
113

114
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
115
  //! Get a input with argument's name described in `op_proto`
116
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
117
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
118
  const std::vector<std::string>& Inputs(const std::string& name) const;
119
  //! Get all inputs variable names
Q
qijun 已提交
120 121
  std::vector<std::string> InputVars() const;

122
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
123
  //! Get a output with argument's name described in `op_proto`
124
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
125 126
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
127
  const std::vector<std::string>& Outputs(const std::string& name) const;
128
  //! Get all outputs variable names
Y
Yu Yang 已提交
129
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
130

Q
qiaolongfei 已提交
131
 protected:
Q
Qiao Longfei 已提交
132
  std::string type_;
D
dongzhihong 已提交
133
  // NOTE: in case of OpGrad, inputs_ contains:
134
  // I (Inputs)
D
dongzhihong 已提交
135 136
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
137
  VariableNameMap inputs_;
Y
Yu Yang 已提交
138

D
dongzhihong 已提交
139 140
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
141
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
142
  AttributeMap attrs_;
143 144 145 146

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
147 148
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
149 150
};

151
class ExecutionContext {
Y
Yan Chunwei 已提交
152
 public:
153 154 155
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
156

Q
qiaolongfei 已提交
157 158 159 160
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
161
  template <typename T>
Y
Yu Yang 已提交
162 163
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
164 165
  }

166
  bool HasInput(const std::string& name) const;
167

168
  bool HasOutput(const std::string& name) const;
169

Y
Yu Yang 已提交
170
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
171
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
172 173
  }

Y
Yu Yang 已提交
174
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
175
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
176 177
  }

178
  const Variable* InputVar(const std::string& name) const {
179
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
180
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
181 182
  }

183
  Variable* OutputVar(const std::string& name) const {
184
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
185
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
186 187
  }

188 189
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
190 191
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
192
    res.reserve(names.size());
193 194
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
195 196
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
197
                   });
Y
Yan Chunwei 已提交
198 199 200
    return res;
  }

201
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
202
    auto names = op_.Outputs(name);
203
    std::vector<Variable*> res;
204
    res.reserve(names.size());
205 206
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
207 208
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
209
                   });
Y
Yan Chunwei 已提交
210 211 212
    return res;
  }

213 214
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
215
    auto* var = InputVar(name);
216
    return var == nullptr ? nullptr : &var->Get<T>();
217 218 219 220
  }

  template <typename T>
  T* Output(const std::string& name) const {
221
    auto var = OutputVar(name);
222
    return var == nullptr ? nullptr : var->GetMutable<T>();
223 224 225 226 227 228 229 230
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
231
                   [&](const std::string& sub_name) -> const T* {
232
                     auto var = scope_.FindVar(sub_name);
233
                     return var == nullptr ? nullptr : &var->Get<T>();
234 235 236 237 238
                   });
    return res;
  }

  template <typename T>
239
  std::vector<T*> MultiOutput(const std::string& name) const {
240
    auto names = op_.Outputs(name);
241
    std::vector<T*> res;
242 243
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
244
                   [&](const std::string& sub_name) -> T* {
245
                     auto var = scope_.FindVar(sub_name);
246
                     return var == nullptr ? nullptr : var->GetMutable<T>();
247 248 249 250
                   });
    return res;
  }

251
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
252

Q
QI JUN 已提交
253 254 255 256 257
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

258
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
259
    return device_context_;
Q
qijun 已提交
260
  }
Q
qijun 已提交
261

Q
QI JUN 已提交
262 263 264 265 266 267 268 269
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
270
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
271 272 273
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
274

D
dzhwinter 已提交
275
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
276 277 278 279
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

280
 private:
281 282
  const OperatorBase& op_;
  const Scope& scope_;
283
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
284 285
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
300
class OpKernelBase {
Q
qijun 已提交
301
 public:
Q
qijun 已提交
302
  /**
303
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
304 305
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
306
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
307 308
   */

309
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
310

Y
Yu Yang 已提交
311 312 313 314 315 316 317
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
318 319
};

Y
Yu Yang 已提交
320 321
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
322
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
323
  using OpKernelMap =
Y
yuyang18 已提交
324
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
325

Y
Yu Yang 已提交
326 327
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
328 329
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
330 331 332 333
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
334
  }
Y
Yan Chunwei 已提交
335

336
  bool SupportGPU() const override {
Y
Yu Yang 已提交
337 338 339 340 341
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
342 343
  }

344 345 346
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
347

Q
qiaolongfei 已提交
348
 protected:
349 350 351 352
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
353 354

 private:
355
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
356
  // same.
357
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
358
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
373 374
};

Y
Yu Yang 已提交
375 376
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
377 378
}  // namespace framework
}  // namespace paddle