partial_program.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20 21
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
22
from paddle.fluid.dygraph.base import switch_to_static_graph
23
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
24
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
25 26
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
27 28
import paddle.compat as cpt

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
        assert len(self.tolist()) == len(value_list)
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
        for idx, var in enumerate(self.tolist()):
            if isinstance(var, (framework.Variable, core.VarBase)):
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
            for var in self.tolist():
                if not isinstance(var, (framework.Variable, core.VarBase)):
                    warning_types.add(type(var))
            if warning_types:
72
                logging_utils.warn(
73 74 75 76 77 78 79 80 81 82 83 84
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
        return self.tolist()[item]

85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


109 110 111 112 113 114
class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
115 116 117
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
118 119 120 121 122 123 124 125 126 127 128 129 130 131
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
132 133
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
134
        self._params = parameters if parameters is not None else []
135

136
        self._origin_main_program = self._verify_program(main_program)
137 138
        self._inner_scope = core.Scope()
        # Set default mode to train
139
        self._double_grads = self._get_double_grads(self._origin_main_program)
140
        self.training = True
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    @LazyInitialized
    def _infer_program(self):
        """
        Lazy initialized property of infer_program.
        """
        return self._clone_for_test(self._origin_main_program)

    @LazyInitialized
    def _train_program(self):
        """
        Lazy initialized property of train_program.
        """
        train_program = self._append_backward_desc(self._origin_main_program)
        # Note: Only set grad type once after initializing train program. So we
        # put it here.
        self._set_grad_type(self._params, train_program)

        return train_program

161 162 163 164 165 166 167 168 169 170 171 172
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

173
    @switch_to_static_graph
174
    def _append_backward_desc(self, main_program):
175 176
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
177
        targets = []
178
        for out in self._outputs.tolist():
179 180 181 182 183 184 185 186
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

187 188 189 190 191 192 193 194 195 196
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
197
            found_param = False
198
            for block in program.blocks:
199 200 201 202 203 204
                for op in block.ops:
                    if param.name in op.input_arg_names or param.name in op.output_arg_names:
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
205 206 207 208
                    break

        self._params = required_params

209 210 211 212 213 214 215 216 217 218 219 220 221
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
                    var_base = core.VarBase(var_desc.dtype(),
                                            var_desc.shape(),
                                            var_desc.name(),
                                            var_desc.type(), False)
                    double_grads.append(var_base)
        return double_grads

222 223
    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)
224 225 226 227 228 229 230 231 232

        attrs = ('global_block', self.program.desc.block(0), 'start_op_index',
                 0, 'end_op_index', self._infer_program.desc.block(0).op_size(),
                 'is_test', not self.training)
        core.ops.run_program(
            valid_vars(in_vars),
            valid_vars(self._params),
            valid_vars(out_vars), tmp_scope_vec,
            valid_vars(self._double_grads), *attrs)
233

234 235
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
236

237 238 239 240
    @property
    def program(self):
        return self._train_program if self.training else self._infer_program

241 242 243 244 245
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
246 247
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
248 249
        # Convert variable into VarBase and feed in training data.
        input_vars = []
250
        for i, value in enumerate(flatten_inputs):
251 252 253
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
254
                    name=self._inputs[i].desc.name(),
255 256 257 258
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
259 260 261 262 263 264 265 266 267 268 269
                if value.stop_gradient:
                    # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                    # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                    # to avoid this problem.
                    var = paddle.to_tensor(
                        value,
                        dtype=value.dtype,
                        place=framework._current_expected_place(),
                        stop_gradient=True)
                else:
                    var = value
270
                var.name = self._inputs[i].desc.name()
271 272 273
            else:
                continue
            input_vars.append(var)
274

275 276
        # Create VarBase to receive output data.
        out_vars = []
277 278 279
        for idx in self._outputs.var_ids:
            var = self._outputs[idx]
            assert isinstance(var, framework.Variable)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

295 296 297 298 299 300 301 302 303
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
304
        if outs is not None and len(outs) == 1:
305 306 307 308
            outs = outs[0]

        return outs

309 310 311 312
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    def _is_no_value(self, var):
        if isinstance(var, core.VarBase):
            if var.shape == [1] and var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
        if isinstance(out_vars, core.VarBase):
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var))
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

346
    def _set_grad_type(self, params, train_program):
347 348 349 350 351 352 353 354
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
355
            grad_var = train_program.desc.block(0).find_var(
356 357 358 359 360 361
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

362 363 364 365 366 367 368 369 370 371 372 373 374
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

375 376 377 378 379 380 381 382 383 384 385 386
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

387 388 389 390
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
            if not isinstance(var, core.VarBase):
391
                raise TypeError(
392 393 394
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.
                    format(i, type(var)))
            param_and_buffer_names_set.add(var.name)
395 396

        for block in main_program.blocks:
397
            for name, var in six.iteritems(block.vars):
398
                if isinstance(var, framework.Parameter):
399
                    if name not in param_and_buffer_names_set:
400 401 402 403 404 405 406 407
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)