gru.cc 4.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/gen/gru.h"
#include <stddef.h>  // offsetof
17
#include <memory>
T
tensor-tang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace jit {
namespace gen {

void GRUJitCode::genCode() {
  reg64_t reg_ptr_gates = rax;
  reg64_t reg_ptr_ht_1 = r9;
  reg64_t reg_ptr_ht = r10;
  mov(reg_ptr_gates, ptr[param1 + offsetof(gru_t, gates)]);
  mov(reg_ptr_ht_1, ptr[param1 + offsetof(gru_t, ht_1)]);
  mov(reg_ptr_ht, ptr[param1 + offsetof(gru_t, ht)]);
  ymm_t ymm_one = ymm_t(0);

  if (id_ == 2) {
    reg64_t reg_ptr_tmp = r11;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(ymm_one, ptr[reg_ptr_tmp + OFFSET_EXP_ONE]);
  }
  int offset = 0;
  int d = num_ * sizeof(float);
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
    ymm_t ymm_u = ymm_t(1);
    ymm_t ymm_r = ymm_t(2);
    ymm_t ymm_s = ymm_t(3);
    ymm_t ymm_ht_1 = ymm_t(4);
    // W: {W_update, W_reset; W_state}
    if (id_ == 0 || id_ == 2) {
      vmovups(ymm_u, ptr[reg_ptr_gates + offset]);
      vmovups(ymm_s, ptr[reg_ptr_gates + offset + 2 * d]);
    }
    if (id_ == 1) {
      vmovups(ymm_r, ptr[reg_ptr_gates + offset + d]);
    }
    if (id_ == 1 || id_ == 2) {
      vmovups(ymm_ht_1, ptr[reg_ptr_ht_1 + offset]);
    }

    if (id_ == 0) {
      // ht = act_gate(u) * act_cand(s)
      act<ymm_t>(ymm_u, ymm_u, act_gate_);
      act<ymm_t>(ymm_s, ymm_s, act_cand_);
      vmulps(ymm_s, ymm_s, ymm_u);
      vmovups(ptr[reg_ptr_ht + offset], ymm_s);
    } else if (id_ == 1) {
      // ht = act_gate(r) * ht_1
      act<ymm_t>(ymm_r, ymm_r, act_gate_);
      vmulps(ymm_r, ymm_r, ymm_ht_1);
      vmovups(ptr[reg_ptr_ht + offset], ymm_r);
    } else if (id_ == 2) {
      // ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
      ymm_t ymm_one_inner = ymm_t(ymm_one.getIdx());
      act<ymm_t>(ymm_u, ymm_u, act_gate_);
      act<ymm_t>(ymm_s, ymm_s, act_cand_);
      vmulps(ymm_s, ymm_s, ymm_u);
      vsubps(ymm_u, ymm_one_inner, ymm_u);
      vmulps(ymm_u, ymm_ht_1, ymm_u);
      vaddps(ymm_u, ymm_s, ymm_u);
      vmovups(ptr[reg_ptr_ht + offset], ymm_u);
    }
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }
  ret();
}

#define DECLARE_GRU_CREATOR(name)                                 \
  class name##Creator : public JitCodeCreator<gru_attr_t> {       \
   public:                                                        \
    /* TODO(TJ): enable more */                                   \
90
    bool CanBeUsed(const gru_attr_t& attr) const override {       \
T
tensor-tang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
      return platform::MayIUse(platform::avx) && attr.d % 8 == 0; \
    }                                                             \
    size_t CodeSize(const gru_attr_t& attr) const override {      \
      return 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 2 * 8;          \
    }                                                             \
    std::unique_ptr<GenBase> CreateJitCode(                       \
        const gru_attr_t& attr) const override {                  \
      return make_unique<name##JitCode>(attr, CodeSize(attr));    \
    }                                                             \
  }

DECLARE_GRU_CREATOR(GRUH1);
DECLARE_GRU_CREATOR(GRUHtPart1);
DECLARE_GRU_CREATOR(GRUHtPart2);

#undef DECLARE_GRU_CREATOR

}  // namespace gen
}  // namespace jit
}  // namespace operators
}  // namespace paddle

namespace gen = paddle::operators::jit::gen;

T
tensor-tang 已提交
115 116 117
REGISTER_JITKERNEL_GEN(kGRUH1, gen::GRUH1Creator);
REGISTER_JITKERNEL_GEN(kGRUHtPart1, gen::GRUHtPart1Creator);
REGISTER_JITKERNEL_GEN(kGRUHtPart2, gen::GRUHtPart2Creator);