activation.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
from paddle.nn import Layer

__all__ = []


class ReLU(Layer):
    """
23
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
41 42 43 44 45 46

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
            relu = paddle.incubate.sparse.nn.ReLU()
            out = relu(sparse_x)
            # [0., 0., 1.]
47 48 49 50 51 52 53 54 55 56 57 58
    """

    def __init__(self, name=None):
        super(ReLU, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
59 60 61 62


class Softmax(Layer):
    """
63
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
64 65

    Note:
66
        Only support axis=-1 for SparseCsrTensor, which is faster when read data 
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        by row (axis=-1).

    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` 
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.seed(100)

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            mask = np.random.rand(3, 4) < 0.5
            np_x = np.random.rand(3, 4) * mask
            # [[0.         0.         0.96823406 0.19722934]
            #  [0.94373937 0.         0.02060066 0.71456372]
            #  [0.         0.         0.         0.98275049]]

            csr = paddle.to_tensor(np_x).to_sparse_csr()
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 2, 5, 6], 
            #        cols=[2, 3, 0, 2, 3, 3], 
            #        values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
            #                0.98275049])

            softmax = paddle.incubate.sparse.nn.Softmax()
            out = softmax(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 2, 5, 6], 
            #        cols=[2, 3, 0, 2, 3, 3], 
            #        values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
            #                1.        ])
112 113 114 115 116 117 118 119 120 121 122 123 124
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211


class ReLU6(Layer):
    """
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        ReLU(x) = min(max(0,x), 6)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
            relu6 = paddle.incubate.sparse.nn.ReLU6()
            out = relu6(sparse_x)
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


class LeakyReLU(Layer):
    """
    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor. 

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
            leaky_relu = paddle.incubate.sparse.nn.LeakyReLU(0.5)
            out = leaky_relu(sparse_x)
    """

    def __init__(self, negative_slope=0.01, name=None):
        super(LeakyReLU, self).__init__()
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str