test_log_loss_op.py 1.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
kavyasrinet 已提交
15
import unittest
16

K
kavyasrinet 已提交
17
import numpy as np
18
from op_test import OpTest
19

K
kavyasrinet 已提交
20

21 22 23 24
def sigmoid_array(x):
    return 1 / (1 + np.exp(-x))


K
kavyasrinet 已提交
25 26 27
class TestLogLossOp(OpTest):
    def setUp(self):
        self.op_type = 'log_loss'
28
        samples_num = 100
K
kavyasrinet 已提交
29

30 31
        x = np.random.random((samples_num, 1)).astype("float32")
        predicted = sigmoid_array(x)
K
kavyasrinet 已提交
32
        labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32")
33
        epsilon = 1e-7
K
kavyasrinet 已提交
34 35 36 37 38 39
        self.inputs = {
            'Predicted': predicted,
            'Labels': labels,
        }

        self.attrs = {'epsilon': epsilon}
40 41 42
        loss = -labels * np.log(predicted + epsilon) - (1 - labels) * np.log(
            1 - predicted + epsilon
        )
K
kavyasrinet 已提交
43 44 45 46 47 48 49 50 51 52 53
        self.outputs = {'Loss': loss}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Predicted'], 'Loss', max_relative_error=0.03)


if __name__ == '__main__':
    unittest.main()