test_basic_lstm_api.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy
18 19
import numpy as np

20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22 23
import paddle.fluid.layers as layers
from paddle.fluid import framework
24 25 26
from paddle.fluid.contrib.layers import basic_lstm
from paddle.fluid.executor import Executor

27 28
np.set_seed(123)

29 30 31 32 33 34 35 36 37
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
38
    return 1.0 / (1.0 + np.exp(-y))
39 40 41


def tanh(x):
42
    y = -2.0 * x
43
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    return (2.0 / (1.0 + np.exp(y))) - 1.0


def lstm_np(
    input,
    init_h,
    init_c,
    hidden_size,
    gate_weight,
    gate_bias,
    num_layers=1,
    batch_first=False,
    is_bidirect=False,
    sequence_length=None,
    forget_bias=1.0,
):
60 61 62 63 64 65 66 67 68 69 70 71
    def step(step_in, pre_hidden, pre_cell, gate_w, gate_b):
        concat_1 = np.concatenate([step_in, pre_hidden], 1)

        gate_input = np.matmul(concat_1, gate_w)
        gate_input += gate_b
        i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)

        new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
        new_hidden = tanh(new_cell) * sigmoid(o)

        return new_hidden, new_cell

72 73
    mask = None

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if batch_first:
        input = np.tranpose(input, [1, 0, 2])
        if mask is not None:
            mask = np.transpose(mask, [1, 0])

    batch_size = input.shape[1]
    if sequence_length is not None:
        max_seq_len = input.shape[0]

        mask = np.zeros([batch_size, max_seq_len])

        for i, len in enumerate(sequence_length):
            mask[i, :len] = 1.0

        mask = np.transpose(mask, [1, 0])

    direc_num = 1
    if is_bidirect:
        direc_num = 2
    if init_h:
        init_h = np.reshape(init_h, [num_layers, direc_num, -1, hidden_size])
        init_c = np.reshape(init_c, [num_layers, direc_num, -1, hidden_size])
    else:
        init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])
        init_c = np.zeros([num_layers, direc_num, batch_size, hidden_size])

    def get_single_direction_output(rnn_input, mask=None, direc_index=0):
        seq_len = rnn_input.shape[0]

        output = []
        # init pre hidden
        pre_hidden_array = []
        pre_cell_array = []
        for i in range(num_layers):
            pre_hidden_array.append(init_h[i, direc_index])
            pre_cell_array.append(init_c[i, direc_index])

        for i in range(seq_len):
            step_input = rnn_input[i]

            if mask is not None:
                step_mask = mask[i]
                step_mask = np.reshape(step_mask, [-1, 1])
117
                # print("np mask", step_mask.shape  )
118 119 120

            for i in range(num_layers):
                new_hidden, new_cell = step(
121 122 123
                    step_input,
                    pre_hidden_array[i],
                    pre_cell_array[i],
124
                    gate_weight[direc_index * num_layers + i],
125 126
                    gate_bias[direc_index * num_layers + i],
                )
127 128 129 130

                if mask is not None:

                    new_hidden = np.multiply(
131 132 133 134
                        new_hidden, step_mask
                    ) - np.multiply(pre_hidden_array[i], (step_mask - 1.0))
                    # new_hidden = new_hidden * step_mask - pre_hidden_array[i] * ( step_mask -1 )
                    # new_cell = new_cell * step_mask - pre_cell_array[i] * (step_mask -1)
135
                    new_cell = np.multiply(new_cell, step_mask) - np.multiply(
136 137
                        pre_cell_array[i], (step_mask - 1.0)
                    )
138 139 140 141 142 143 144 145 146 147

                pre_hidden_array[i] = new_hidden
                pre_cell_array[i] = new_cell

                step_input = new_hidden
            output.append(step_input)
        rnn_out = np.concatenate(output, 0)
        rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])

        last_hidden_out = np.concatenate(pre_hidden_array, 0)
148 149 150
        last_hidden_out = np.reshape(
            last_hidden_out, [num_layers, -1, hidden_size]
        )
151 152 153 154 155 156 157

        last_cell_out = np.concatenate(pre_cell_array, 0)
        last_cell_out = np.reshape(last_cell_out, [num_layers, -1, hidden_size])

        return rnn_out, last_hidden_out, last_cell_out

    fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
158 159
        input, mask, direc_index=0
    )
160 161 162 163 164 165 166 167

    if is_bidirect:
        bw_input = input[::-1]
        bw_mask = None
        if mask is not None:
            bw_mask = mask[::-1]

        bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
168 169
            bw_input, bw_mask, direc_index=1
        )
170 171 172 173 174

        bw_rnn_out = bw_rnn_out[::-1]

        rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
        last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
175 176 177
        last_hidden = np.reshape(
            last_hidden, [num_layers * direc_num, -1, hidden_size]
        )
178 179

        last_cell = np.concatenate([fw_last_cell, bw_last_cell], 1)
180 181 182
        last_cell = np.reshape(
            last_cell, [num_layers * direc_num, -1, hidden_size]
        )
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell
    else:
        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden
        last_cell = fw_last_cell

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell


class TestBasicLSTMApi(unittest.TestCase):
    def setUp(self):
        self.hidden_size = 10
        self.batch_size = 5
        self.seq_len = 6
        self.num_layers = 2
        self.is_bidirect = True
        self.batch_first = False
        self.forget_bias = 1.0

    def test_run(self):
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        x = layers.data(
            name='x',
            shape=[-1, self.batch_size, self.hidden_size],
            dtype='float32',
        )
        sequence_length = layers.data(
            name="sequence_length", shape=[-1], dtype='float32'
        )

        rnn_out, last_hidden, last_cell = basic_lstm(
            x,
            None,
            None,
            self.hidden_size,
            num_layers=self.num_layers,
            batch_first=self.batch_first,
            bidirectional=self.is_bidirect,
            sequence_length=sequence_length,
            forget_bias=self.forget_bias,
        )
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        last_hidden.persisbale = True
        rnn_out.persisbale = True

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)
        exe.run(framework.default_startup_program())

        param_list = fluid.default_main_program().block(0).all_parameters()

        # process weight and bias
        gate_weight = []
        gate_bias = []

        for i in range(self.num_layers):
            gate_w_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.w_0"
            gate_b_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.b_0"

251
            gate_w = np.array(
252 253 254 255 256
                fluid.global_scope().find_var(gate_w_name).get_tensor()
            )
            gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                'float32'
            )
257
            fluid.global_scope().find_var(gate_w_name).get_tensor().set(
258 259
                gate_w, place
            )
260

261
            gate_b = np.array(
262 263 264 265 266
                fluid.global_scope().find_var(gate_b_name).get_tensor()
            )
            gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                'float32'
            )
267
            fluid.global_scope().find_var(gate_b_name).get_tensor().set(
268 269
                gate_b, place
            )
270 271 272 273 274 275

            gate_weight.append(gate_w)
            gate_bias.append(gate_b)

        if self.is_bidirect:
            for i in range(self.num_layers):
276 277 278 279 280 281 282 283 284 285
                gate_w_name = (
                    "basic_lstm_reverse_layers_"
                    + str(i)
                    + "/BasicLSTMUnit_0.w_0"
                )
                gate_b_name = (
                    "basic_lstm_reverse_layers_"
                    + str(i)
                    + "/BasicLSTMUnit_0.b_0"
                )
286

287
                gate_w = np.array(
288 289 290 291 292
                    fluid.global_scope().find_var(gate_w_name).get_tensor()
                )
                gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                    'float32'
                )
293
                fluid.global_scope().find_var(gate_w_name).get_tensor().set(
294 295
                    gate_w, place
                )
296

297
                gate_b = np.array(
298 299 300 301 302
                    fluid.global_scope().find_var(gate_b_name).get_tensor()
                )
                gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                    'float32'
                )
303
                fluid.global_scope().find_var(gate_b_name).get_tensor().set(
304 305
                    gate_b, place
                )
306 307 308 309

                gate_weight.append(gate_w)
                gate_bias.append(gate_b)

310
        step_input_np = np.random.uniform(
311 312
            -0.1, 0.1, (self.seq_len, self.batch_size, self.hidden_size)
        ).astype('float32')
313
        sequence_length_np = np.random.randint(
314 315
            self.seq_len // 2, self.seq_len, size=(self.batch_size)
        ).astype('int64')
316

317 318 319 320
        out = exe.run(
            feed={'x': step_input_np, 'sequence_length': sequence_length_np},
            fetch_list=[rnn_out, last_hidden, last_cell],
        )
321 322 323 324 325

        api_rnn_out = out[0]
        api_last_hidden = out[1]
        api_last_cell = out[2]

326 327 328 329 330 331 332 333 334 335 336 337
        np_out = lstm_np(
            step_input_np,
            None,
            None,
            self.hidden_size,
            gate_weight,
            gate_bias,
            num_layers=self.num_layers,
            batch_first=self.batch_first,
            is_bidirect=self.is_bidirect,
            sequence_length=sequence_length_np,
        )
338

339
        np.testing.assert_allclose(api_rnn_out, np_out[0], rtol=0.0001, atol=0)
340 341 342 343 344 345
        np.testing.assert_allclose(
            api_last_hidden, np_out[1], rtol=0.0001, atol=0
        )
        np.testing.assert_allclose(
            api_last_cell, np_out[2], rtol=0.0001, atol=0
        )
346 347 348 349


if __name__ == '__main__':
    unittest.main()