ps_gpu_wrapper.cc 88.3 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
T
Thunderbrook 已提交
28
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
29

30 31
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"

T
Thunderbrook 已提交
32
#include <algorithm>
Y
yaoxuefeng 已提交
33
#include <deque>
L
lxsbupt 已提交
34
#include <unordered_set>
Y
yaoxuefeng 已提交
35

D
danleifeng 已提交
36
#include "paddle/fluid/framework/data_set.h"
D
danleifeng 已提交
37
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_utils.h"
L
lxsbupt 已提交
38
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h"
T
Thunderbrook 已提交
39
#include "paddle/fluid/platform/timer.h"
40 41 42
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
#endif
T
Thunderbrook 已提交
43

D
danleifeng 已提交
44
DECLARE_int32(gpugraph_dedup_pull_push_mode);
L
lxsbupt 已提交
45
DECLARE_int32(gpugraph_storage_mode);
D
danleifeng 已提交
46

T
Thunderbrook 已提交
47 48 49
namespace paddle {
namespace framework {

T
Thunderbrook 已提交
50
#ifdef PADDLE_WITH_PSLIB
51 52 53 54 55 56
void AfsWrapper::init(const std::string& fs_name,
                      const std::string& fs_user,
                      const std::string& pass_wd,
                      const std::string& conf) {
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
87 88 89 90 91 92 93 94 95 96 97 98

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
99 100
#endif

T
Thunderbrook 已提交
101 102
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
103
std::mutex PSGPUWrapper::ins_mutex;
T
Thunderbrook 已提交
104 105 106 107 108
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
109 110
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
111
  if (ret != 0) {
112
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
113 114 115 116
  }
  use_afs_api_ = 1;
}
#endif
L
lxsbupt 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

void PSGPUWrapper::add_key_to_local(const std::vector<uint64_t>& vec_data) {
  size_t total_len = vec_data.size();
  size_t len_per_thread = total_len / thread_keys_thread_num_;
  size_t begin = 0;
  std::vector<std::thread> threads;

  int remain = total_len % thread_keys_thread_num_;
  auto gen_graph_data_func = [this](const std::vector<uint64_t>& total_data,
                                    int begin_index,
                                    int end_index,
                                    int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index;
         iter++) {
      uint64_t cur_key = *iter;
      int shard_id = cur_key % thread_keys_shard_num_;
      this->thread_keys_[i][shard_id].insert(cur_key);
    }
  };
  auto gen_graph_dynamic_mf_func = [this](
                                       const std::vector<uint64_t>& total_data,
                                       int begin_index,
                                       int end_index,
                                       int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index;
         iter++) {
      uint64_t cur_key = *iter;
      int shard_id = cur_key % thread_keys_shard_num_;
147
      // TODO(lxsbupt): feasign <-> slot <-> multi_dim
L
lxsbupt 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
      this->thread_dim_keys_[i][shard_id][0].insert(cur_key);
    }
  };
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    if (!multi_mf_dim_) {
      threads.push_back(
          std::thread(gen_graph_data_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
    } else {
      threads.push_back(
          std::thread(gen_graph_dynamic_mf_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
    }
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
  }
}

void PSGPUWrapper::add_key_to_gputask(std::shared_ptr<HeterContext> gpu_task) {
  std::vector<std::thread> threads;
  platform::Timer timeline;
  timeline.Start();
  // merge thread_keys to shard_keys
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(
          shard_num, dim_id, thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
    }
  }
  for (auto& t : threads) {
    t.join();
  }
  timeline.Pause();

196
  VLOG(1) << "GpuPs task add keys cost " << timeline.ElapsedSec()
L
lxsbupt 已提交
197 198
          << " seconds.";
  timeline.Start();
199
  size_t slot_num = static_cast<size_t>(slot_num_for_pull_feature_);
L
lxsbupt 已提交
200 201 202 203 204 205
  // no slot_fea mode and whole_hbm mode, only keep one unique_sort action
  if (slot_num > 0 && FLAGS_gpugraph_storage_mode !=
                          paddle::framework::GpuGraphStorageMode::WHOLE_HBM) {
    gpu_task->UniqueKeys();
  }
  timeline.Pause();
206
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
L
lxsbupt 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
}

void PSGPUWrapper::resize_gputask(std::shared_ptr<HeterContext> gpu_task) {
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      if (i == 0 && j == multi_mf_dim_ - 1) {
        gpu_task->feature_dim_keys_[i][j].push_back(0);
      }
      gpu_task->value_dim_ptr_[i][j].resize(
          gpu_task->feature_dim_keys_[i][j].size());
    }
  }
}

221 222
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task,
                                Dataset* dataset_for_pull) {
Y
yaoxuefeng 已提交
223
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
224 225
  platform::Timer timeline;
  timeline.Start();
226
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
227
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
228

Y
yaoxuefeng 已提交
229
  std::vector<std::thread> threads;
Y
yaoxuefeng 已提交
230 231 232 233 234 235 236
  // data should be in input channel

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
237
    }
Y
yaoxuefeng 已提交
238
  }
Y
yaoxuefeng 已提交
239 240 241 242

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
243
  size_t begin = 0;
Y
yaoxuefeng 已提交
244 245 246

  std::string data_set_name = std::string(typeid(*dataset_).name());

L
lxsbupt 已提交
247
  VLOG(1) << "gpu_graph_mode_:" << gpu_graph_mode_;
D
danleifeng 已提交
248 249 250
  if (!gpu_graph_mode_) {
    if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
      VLOG(0) << "ps_gpu_wrapper use SlotRecordDataset";
251 252
      SlotRecordDataset* dataset =
          reinterpret_cast<SlotRecordDataset*>(dataset_);
D
danleifeng 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
      auto input_channel = dataset->GetInputChannel();
      VLOG(0) << "psgpu wrapperinputslotchannle size: "
              << input_channel->Size();
      const std::deque<SlotRecord>& vec_data = input_channel->GetData();
      total_len = vec_data.size();
      len_per_thread = total_len / thread_keys_thread_num_;
      remain = total_len % thread_keys_thread_num_;
      VLOG(0) << "total len: " << total_len;
      auto gen_dynamic_mf_func = [this](
                                     const std::deque<SlotRecord>& total_data,
                                     int begin_index,
                                     int end_index,
                                     int i) {
        for (auto iter = total_data.begin() + begin_index;
             iter != total_data.begin() + end_index;
             iter++) {
          const auto& ins = *iter;
          const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
          const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
          for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
               slot_idx++) {
            for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
                 j < slot_offset[slot_offset_vector_[slot_idx] + 1];
                 j++) {
              int shard_id = feasign_v[j] % thread_keys_shard_num_;
              int dim_id = slot_index_vec_[slot_idx];
              if (feasign_v[j] != 0) {
                this->thread_dim_keys_[i][shard_id][dim_id].insert(
                    feasign_v[j]);
              }
Y
yaoxuefeng 已提交
283
            }
284 285
          }
        }
D
danleifeng 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
      };
      for (int i = 0; i < thread_keys_thread_num_; i++) {
        threads.push_back(
            std::thread(gen_dynamic_mf_func,
                        std::ref(vec_data),
                        begin,
                        begin + len_per_thread + (i < remain ? 1 : 0),
                        i));

        begin += len_per_thread + (i < remain ? 1 : 0);
      }
      for (std::thread& t : threads) {
        t.join();
      }
      timeline.Pause();
      VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec()
              << " seconds.";
    } else {
      CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
      VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
306
      MultiSlotDataset* dataset = reinterpret_cast<MultiSlotDataset*>(dataset_);
D
danleifeng 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
      auto input_channel = dataset->GetInputChannel();

      const std::deque<Record>& vec_data = input_channel->GetData();
      total_len = vec_data.size();
      len_per_thread = total_len / thread_keys_thread_num_;
      remain = total_len % thread_keys_thread_num_;
      auto gen_func = [this](const std::deque<Record>& total_data,
                             int begin_index,
                             int end_index,
                             int i) {
        for (auto iter = total_data.begin() + begin_index;
             iter != total_data.begin() + end_index;
             iter++) {
          const auto& ins = *iter;
          const auto& feasign_v = ins.uint64_feasigns_;
          for (const auto feasign : feasign_v) {
            uint64_t cur_key = feasign.sign().uint64_feasign_;
            int shard_id = cur_key % thread_keys_shard_num_;
            this->thread_keys_[i][shard_id].insert(cur_key);
          }
        }
      };
      for (int i = 0; i < thread_keys_thread_num_; i++) {
        threads.push_back(
            std::thread(gen_func,
                        std::ref(vec_data),
                        begin,
                        begin + len_per_thread + (i < remain ? 1 : 0),
                        i));
        begin += len_per_thread + (i < remain ? 1 : 0);
337
      }
D
danleifeng 已提交
338 339 340 341 342 343
      for (std::thread& t : threads) {
        t.join();
      }
      timeline.Pause();
      VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec()
              << " seconds.";
Y
yaoxuefeng 已提交
344 345
    }
  } else {
346 347
    SlotRecordDataset* dataset =
        reinterpret_cast<SlotRecordDataset*>(dataset_for_pull);
D
danleifeng 已提交
348
    const std::vector<uint64_t>& vec_data = dataset->GetGpuGraphTotalKeys();
L
lxsbupt 已提交
349 350 351
    timeline.Start();
    add_key_to_local(vec_data);
    timeline.Pause();
352
    VLOG(1) << "GpuGraphTotalKeys: " << vec_data.size()
L
lxsbupt 已提交
353 354 355
            << ", add_key_to_local cost " << timeline.ElapsedSec()
            << " seconds.";
  }
Y
yaoxuefeng 已提交
356

L
lxsbupt 已提交
357 358 359 360 361 362 363 364 365 366
  add_key_to_gputask(gpu_task);
}

void PSGPUWrapper::add_slot_feature(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
  platform::Timer time_stage;
  timeline.Start();
  // 8卡数据分片
  size_t device_num = heter_devices_.size();
  std::vector<std::thread> threads;
367 368
  size_t slot_num = static_cast<size_t>(
      slot_num_for_pull_feature_);  // node slot 9008 in slot_vector
L
lxsbupt 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  auto& local_dim_keys = gpu_task->feature_dim_keys_;  // [shard_num, 0, keys]]
  double divide_nodeid_cost = 0;
  double get_feature_id_cost = 0;
  double add_feature_to_set_cost = 0;
  double add_feature_to_key_cost = 0;

  std::vector<std::vector<uint64_t>> node_ids(device_num);
  size_t node_num = 0;
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      node_num += local_dim_keys[i][j].size();
    }
  }
  for (auto& node_id_vector : node_ids) {
    node_id_vector.reserve(node_num * 1.2 / device_num);
  }

  auto& device_dim_mutex = gpu_task->dim_mutex_;

  auto divide_nodeid_to_device =
      [this, device_num, &local_dim_keys, &node_ids, &device_dim_mutex](int i,
                                                                        int j) {
        std::vector<std::vector<uint64_t>> task_keys(device_num);
        size_t batch = 10000;
        for (size_t k = 0; k < device_num; k++) {
          task_keys[k].reserve(batch * 1.2 / device_num);
        }
        std::vector<int> shuffle_device = shuffle_int_vector(device_num);
        size_t start = 0;
        while (start < local_dim_keys[i][j].size()) {
          if (batch + start > local_dim_keys[i][j].size()) {
            batch = local_dim_keys[i][j].size() - start;
D
danleifeng 已提交
401
          }
L
lxsbupt 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
          for (size_t k = start; k < (start + batch); k++) {
            int shard = local_dim_keys[i][j][k] % device_num;
            task_keys[shard].push_back(local_dim_keys[i][j][k]);
          }
          // allocate local keys to devices
          for (auto dev : shuffle_device) {
            device_dim_mutex[dev][0]->lock();
            int len = task_keys[dev].size();
            for (int k = 0; k < len; ++k) {
              node_ids[dev].push_back(task_keys[dev][k]);
            }
            device_dim_mutex[dev][0]->unlock();
            task_keys[dev].clear();
          }
          start += batch;
        }
      };
  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  time_stage.Start();

  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads[i * multi_mf_dim_ + j] =
          std::thread(divide_nodeid_to_device, i, j);
    }
  }
  for (std::thread& t : threads) {
    t.join();
  }
  threads.clear();
  time_stage.Pause();
  divide_nodeid_cost = time_stage.ElapsedSec();
434 435
  gpu_task->sub_graph_feas =
      reinterpret_cast<void*>(new std::vector<GpuPsCommGraphFea>);
L
lxsbupt 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  std::vector<GpuPsCommGraphFea>& sub_graph_feas =
      *((std::vector<GpuPsCommGraphFea>*)gpu_task->sub_graph_feas);
  std::vector<std::vector<uint64_t>> feature_ids(device_num);
  std::vector<uint64_t*> feature_list(device_num);
  std::vector<size_t> feature_list_size(device_num);
  size_t batch = 40000;

  time_stage.Start();
  if (FLAGS_gpugraph_storage_mode ==
      paddle::framework::GpuGraphStorageMode::MEM_EMB_AND_GPU_GRAPH) {
    auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
    auto h_slot_feature_num_map = gpu_graph_ptr->slot_feature_num_map();
    int fea_num_per_node = 0;
    for (size_t i = 0; i < slot_num; ++i) {
      fea_num_per_node += h_slot_feature_num_map[i];
    }

    auto get_feature_id = [this,
                           slot_num,
                           batch,
                           fea_num_per_node,
                           &h_slot_feature_num_map,
                           &node_ids,
                           &feature_ids](int i) {
      platform::CUDADeviceGuard guard(resource_->dev_id(i));
      int* d_slot_feature_num_map;
      uint64_t* d_node_list_ptr;
      uint64_t* d_feature_list_ptr;
464 465
      CUDA_CHECK(cudaMalloc(reinterpret_cast<void**>(&d_slot_feature_num_map),
                            slot_num * sizeof(int)));
L
lxsbupt 已提交
466 467 468 469
      CUDA_CHECK(cudaMemcpy(d_slot_feature_num_map,
                            h_slot_feature_num_map.data(),
                            sizeof(int) * slot_num,
                            cudaMemcpyHostToDevice));
470 471 472
      CUDA_CHECK(cudaMalloc(reinterpret_cast<void**>(&d_node_list_ptr),
                            batch * sizeof(uint64_t)));
      CUDA_CHECK(cudaMalloc(reinterpret_cast<void**>(&d_feature_list_ptr),
L
lxsbupt 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                            batch * fea_num_per_node * sizeof(uint64_t)));
      auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
      uint64_t pos = 0;
      size_t real_batch = 0;
      feature_ids[i].resize(node_ids[i].size() * fea_num_per_node);
      while (pos < node_ids[i].size()) {
        real_batch = (pos + batch) <= node_ids[i].size()
                         ? batch
                         : node_ids[i].size() - pos;
        CUDA_CHECK(cudaMemcpy(d_node_list_ptr,
                              node_ids[i].data() + pos,
                              real_batch * sizeof(uint64_t),
                              cudaMemcpyHostToDevice));
        int ret = gpu_graph_ptr->get_feature_of_nodes(i,
                                                      d_node_list_ptr,
                                                      d_feature_list_ptr,
                                                      real_batch,
                                                      slot_num,
                                                      d_slot_feature_num_map,
                                                      fea_num_per_node);
493 494 495 496
        PADDLE_ENFORCE_EQ(ret,
                          0,
                          platform::errors::PreconditionNotMet(
                              "Get_feature_of_nodes error."));
L
lxsbupt 已提交
497 498 499 500 501 502

        CUDA_CHECK(cudaMemcpy(feature_ids[i].data() + pos * fea_num_per_node,
                              d_feature_list_ptr,
                              real_batch * fea_num_per_node * sizeof(uint64_t),
                              cudaMemcpyDeviceToHost));
        pos += real_batch;
D
danleifeng 已提交
503
      }
L
lxsbupt 已提交
504 505 506 507 508 509 510 511
      cudaFree(d_slot_feature_num_map);
      cudaFree(d_node_list_ptr);
      cudaFree(d_feature_list_ptr);
    };

    threads.resize(device_num);
    for (size_t i = 0; i < device_num; i++) {
      threads[i] = std::thread(get_feature_id, i);
Y
yaoxuefeng 已提交
512 513 514 515
    }
    for (std::thread& t : threads) {
      t.join();
    }
L
lxsbupt 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    threads.clear();
    for (size_t i = 0; i < device_num; i++) {
      feature_list[i] = feature_ids[i].data();
      feature_list_size[i] = feature_ids[i].size();
    }
  } else if (FLAGS_gpugraph_storage_mode ==
                 paddle::framework::GpuGraphStorageMode::
                     MEM_EMB_FEATURE_AND_GPU_GRAPH ||
             FLAGS_gpugraph_storage_mode ==
                 paddle::framework::GpuGraphStorageMode::
                     SSD_EMB_AND_MEM_FEATURE_GPU_GRAPH) {
    auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
    sub_graph_feas = gpu_graph_ptr->get_sub_graph_fea(node_ids, slot_num);
    for (size_t i = 0; i < device_num; i++) {
      feature_list[i] = sub_graph_feas[i].feature_list;
      feature_list_size[i] = sub_graph_feas[i].feature_size;
    }
  } else {
    VLOG(0) << "FLAGS_gpugraph_storage_mode is not adaptived";
  }
  time_stage.Pause();
  get_feature_id_cost = time_stage.ElapsedSec();
  size_t feature_num = 0;
  for (size_t i = 0; i < device_num; i++) {
    feature_num += feature_list_size[i];
  }
542
  VLOG(1) << "feature_num is " << feature_num << " node_num is " << node_num;
L
lxsbupt 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

  size_t set_num = thread_keys_shard_num_;
  std::vector<std::unordered_set<uint64_t>> feature_id_set(set_num);
  std::vector<std::mutex> set_mutex(set_num);

  auto add_feature_to_set =
      [this, set_num, &feature_list, &feature_id_set, &set_mutex](
          int dev, size_t start, size_t end) {
        size_t batch = 10000 * set_num;
        std::vector<std::vector<uint64_t>> feature_list_tmp(set_num);
        for (size_t i = 0; i < set_num; i++) {
          feature_list_tmp[i].reserve((batch * 1.2) / set_num);
        }
        std::vector<int> shuffle_set_index = shuffle_int_vector(set_num);
        size_t pos = start;
        size_t real_batch = 0;
        while (pos < end) {
          real_batch = (pos + batch <= end) ? batch : end - pos;
          for (size_t i = pos; i < pos + real_batch; i++) {
            if (feature_list[dev][i] == 0) {
              continue;
            }
            int shard_num = feature_list[dev][i] % set_num;
            feature_list_tmp[shard_num].push_back(feature_list[dev][i]);
          }
          // uniq in local
          for (size_t i = 0; i < set_num; i++) {
            std::sort(feature_list_tmp[i].begin(), feature_list_tmp[i].end());
            size_t idx = 0;
            size_t total = feature_list_tmp[i].size();
            for (size_t j = 0; j < total; j++) {
              auto& k = feature_list_tmp[i][j];
              if (idx > 0 && feature_list_tmp[i][idx - 1] == k) {
                continue;
              }
              feature_list_tmp[i][idx] = k;
              ++idx;
            }
            feature_list_tmp[i].resize(idx);
          }
          // uniq in global
          for (auto set_index : shuffle_set_index) {
            set_mutex[set_index].lock();
            for (auto feature_id : feature_list_tmp[set_index]) {
              feature_id_set[set_index].insert(feature_id);
            }
            set_mutex[set_index].unlock();
            feature_list_tmp[set_index].clear();
          }
          pos += real_batch;
        }
      };
  size_t device_thread_num = 8;
  threads.resize(device_num * device_thread_num);
  time_stage.Start();
  for (size_t i = 0; i < device_num; i++) {
    size_t start = 0;
    for (size_t j = 0; j < device_thread_num; j++) {
      size_t batch = feature_list_size[i] / device_thread_num;
      if (j < feature_list_size[i] % device_thread_num) {
        batch += 1;
      }
      threads[i * device_thread_num + j] =
          std::thread(add_feature_to_set, i, start, start + batch);
      start += batch;
    }
  }
  for (std::thread& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
612
  }
613
  threads.clear();
L
lxsbupt 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626
  time_stage.Pause();
  add_feature_to_set_cost = time_stage.ElapsedSec();
  auto add_feature_to_key = [this,
                             device_num,
                             &feature_id_set,
                             &local_dim_keys,
                             set_num](int shard_num, int j) {
    local_dim_keys[shard_num][j].reserve(local_dim_keys[shard_num][j].size() +
                                         feature_id_set[shard_num].size());
    for (auto it = feature_id_set[shard_num].begin();
         it != feature_id_set[shard_num].end();
         it++) {
      local_dim_keys[shard_num][j].push_back(*it);
627
    }
L
lxsbupt 已提交
628
    feature_id_set[shard_num].clear();
629
  };
L
lxsbupt 已提交
630 631 632
  time_stage.Start();
  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  for (int i = 0; i < thread_keys_shard_num_; i++) {
Y
yaoxuefeng 已提交
633
    for (int j = 0; j < multi_mf_dim_; j++) {
L
lxsbupt 已提交
634
      threads[i * multi_mf_dim_ + j] = std::thread(add_feature_to_key, i, j);
635
    }
636
  }
L
lxsbupt 已提交
637
  for (std::thread& t : threads) {
638
    t.join();
Y
yaoxuefeng 已提交
639
  }
L
lxsbupt 已提交
640 641 642
  time_stage.Pause();
  add_feature_to_key_cost = time_stage.ElapsedSec();
  threads.clear();
Y
yaoxuefeng 已提交
643
  timeline.Pause();
644
  VLOG(1) << " add_slot_feature costs: " << timeline.ElapsedSec() << " s."
L
lxsbupt 已提交
645 646 647 648
          << " divide_nodeid_cost " << divide_nodeid_cost
          << " get_feature_id_cost " << get_feature_id_cost
          << " add_feature_to_set_cost " << add_feature_to_set_cost
          << " add_feature_to_key_cost " << add_feature_to_key_cost;
649 650 651 652
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
653 654 655
  if (slot_num_for_pull_feature_ > 0 &&
      FLAGS_gpugraph_storage_mode !=
          paddle::framework::GpuGraphStorageMode::WHOLE_HBM) {
L
lxsbupt 已提交
656 657 658 659 660 661 662 663 664
    add_slot_feature(gpu_task);
  }

  resize_gputask(gpu_task);

  platform::Timer time_stage;
  time_stage.Start();
  gpu_task->UniqueKeys();
  time_stage.Pause();
665 666
  VLOG(1) << "passid=" << gpu_task->pass_id_
          << ", BuildPull slot feature uniq and sort cost time: "
L
lxsbupt 已提交
667
          << time_stage.ElapsedSec();
668

669 670 671 672 673
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
Y
yaoxuefeng 已提交
674 675 676 677

  for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
    device_dim_keys[dev].resize(multi_mf_dim_);
    device_dim_ptr[dev].resize(multi_mf_dim_);
678
  }
Y
yaoxuefeng 已提交
679

T
Thunderbrook 已提交
680
  // auto& device_mutex = gpu_task->mutex_;
681 682 683 684 685 686

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
687
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
688
#endif
689

690
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
691 692 693 694 695 696 697 698 699 700 701
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

702
  timeline.Start();
703

704
  auto ptl_dynamic_mf_func =
L
lxsbupt 已提交
705 706
      [this, &local_dim_keys, &local_dim_ptr, &fleet_ptr, &gpu_task](int i,
                                                                     int j) {
707 708 709
        size_t key_size = local_dim_keys[i][j].size();
        int32_t status = -1;
        int32_t cnt = 0;
710
#ifdef PADDLE_WITH_PSLIB
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        while (true) {
          auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
              i,
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
              key_size);
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
738

739 740 741 742
          if (flag) {
            break;
          }
        }
743 744
#endif
#ifdef PADDLE_WITH_PSCORE
745 746
        while (true) {
          auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
L
lxsbupt 已提交
747
              i,
748 749 750
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
L
lxsbupt 已提交
751
              key_size,
752 753
              gpu_task->pass_id_,
              j);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
774

775 776 777 778
          if (flag) {
            break;
          }
        }
779
#endif
780 781 782 783 784
        if (status != 0) {
          LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
          sleep(300);
          exit(-1);
        } else {
L
lxsbupt 已提交
785
          VLOG(1) << "FleetWrapper Pull sparse to local done with table size: "
786 787
                  << local_dim_keys[i][j].size();
        }
788 789 790 791
        if (multi_node_) {
          // filter rank data
          FilterPull(gpu_task, i, j);
        }
792
      };
Y
yaoxuefeng 已提交
793 794

  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
L
lxsbupt 已提交
795 796 797

  uint64_t total_key = 0;
  std::vector<std::future<void>> task_futures;
Y
yaoxuefeng 已提交
798 799 800 801
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      task_futures.emplace_back(
          pull_thread_pool_[i]->enqueue(ptl_dynamic_mf_func, i, j));
L
lxsbupt 已提交
802
      total_key += local_dim_keys[i][j].size();
803
    }
804
  }
Y
yaoxuefeng 已提交
805 806
  for (auto& f : task_futures) {
    f.wait();
807
  }
Y
yaoxuefeng 已提交
808
  task_futures.clear();
809
  timeline.Pause();
810 811
  VLOG(1) << "passid=" << gpu_task->pass_id_
          << ", pull sparse from CpuPS into GpuPS total keys " << total_key
L
lxsbupt 已提交
812
          << ", cost " << timeline.ElapsedSec() << " seconds.";
813 814 815 816 817 818 819 820 821 822 823 824
}
void PSGPUWrapper::FilterPull(std::shared_ptr<HeterContext> gpu_task,
                              const int shard_id,
                              const int dim_id) {
#ifdef PADDLE_WITH_GPU_GRAPH
  auto& shard_keys = gpu_task->feature_dim_keys_[shard_id][dim_id];
  auto& shard_values = gpu_task->value_dim_ptr_[shard_id][dim_id];
  size_t dedup_size = 0;
  for (size_t pos = 0; pos < shard_keys.size(); ++pos) {
    auto& key = shard_keys[pos];
    if (PartitionKeyForRank(key) != rank_id_) {
      continue;
Y
yaoxuefeng 已提交
825
    }
826 827 828 829 830 831
    if (dedup_size == pos) {
      ++dedup_size;
      continue;
    }
    shard_keys[dedup_size] = shard_keys[pos];
    ++dedup_size;
Y
yaoxuefeng 已提交
832
  }
833 834 835
  shard_keys.resize(dedup_size);
  shard_values.resize(dedup_size);
#endif
L
lxsbupt 已提交
836
}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
void PSGPUWrapper::MergePull(std::shared_ptr<HeterContext> gpu_task) {
  if (!multi_node_) {
    return;
  }
#ifdef PADDLE_WITH_GPU_GRAPH
  platform::Timer timeline;
  timeline.Start();
  // barrier
  auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
  if (!gloo_wrapper->IsInitialized()) {
    VLOG(0) << "GLOO is not inited";
    gloo_wrapper->Init();
  }
  gloo_wrapper->Barrier();
  timeline.Pause();

  auto barrier_span = timeline.ElapsedSec();

  timeline.Start();
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
  std::vector<std::future<void>> task_futures;
  for (int dim_id = 0; dim_id < multi_mf_dim_; ++dim_id) {
    auto pass_values = fleet_ptr->worker_ptr_->TakePassSparseReferedValues(
        table_id_, gpu_task->pass_id_, dim_id);
    if (pass_values == nullptr) {
      continue;
    }
    for (int shard_id = 0; shard_id < thread_keys_shard_num_; ++shard_id) {
      auto& merge_values = pass_values->at(shard_id);
      task_futures.emplace_back(pull_thread_pool_[shard_id]->enqueue(
          [this, &gpu_task, &merge_values](int shard_id, int dim_id) {
            auto& shard_keys = gpu_task->feature_dim_keys_[shard_id][dim_id];
            auto& shard_values = gpu_task->value_dim_ptr_[shard_id][dim_id];

            size_t dedup_size = shard_keys.size();
            size_t merge_num = merge_values.keys.size();
            size_t total = merge_num + dedup_size;
            shard_keys.resize(total);
            shard_values.resize(total);

            size_t dedup_index = dedup_size;
            uint64_t last_key = shard_keys[0];

            size_t i = 0;
            size_t k = 0;

            int num_ranks = node_size_ - 1;
            if (num_ranks == 1) {
              while (i < dedup_size && k < merge_num) {
                auto& merge_key = merge_values.keys[k];
                auto& key = shard_keys[i];
                if ((key == merge_key) || (last_key == merge_key)) {
                  ++k;
                  continue;
                }
                if (key < merge_key) {
                  ++i;
                  continue;
                }
                last_key = merge_key;
                shard_keys[dedup_index] = merge_key;
                shard_values[dedup_index] =
                    CONV2FEATURE_PTR(merge_values.values[k]);
                ++k;
                ++dedup_index;
              }
              uint64_t& key = shard_keys[dedup_size - 1];
              while (k < merge_num) {
                auto& merge_key = merge_values.keys[k];
                if (key == merge_key || last_key == merge_key) {
                  ++k;
                  continue;
                }
                last_key = merge_key;
                shard_keys[dedup_index] = merge_key;
                shard_values[dedup_index] =
                    CONV2FEATURE_PTR(merge_values.values[k]);
                ++k;
                ++dedup_index;
              }
            } else {
              merge_values.offsets.push_back(merge_num);
              CHECK(merge_values.offsets.size() ==
                    static_cast<size_t>(node_size_));
              std::vector<size_t> ranks_pos(num_ranks);
              for (int rank = 0; rank < num_ranks; ++rank) {
                ranks_pos[rank] = merge_values.offsets[rank];
              }
              ssize_t pos = -1;
              int sel_rank = -1;
              uint64_t min_key = last_key;
              while (i < dedup_size && k < merge_num) {
                auto& key = shard_keys[i];
                if (key < min_key) {
                  ++i;
                  continue;
                }
                if (pos == -1) {
                  for (int rank = 0; rank < num_ranks; ++rank) {
                    size_t& max = merge_values.offsets[rank + 1];
                    size_t& off = ranks_pos[rank];
                    while (off < max) {
                      auto& mkey = merge_values.keys[off];
                      if (key == mkey || last_key == mkey || min_key == mkey) {
                        ++k;
                        ++off;
                        continue;
                      }
                      if (pos == -1 || min_key > mkey) {
                        min_key = mkey;
                        pos = off;
                        sel_rank = rank;
                      }
                      break;
                    }
                  }
                  if (pos == -1) {
                    PADDLE_ENFORCE_EQ((k == merge_num),
                                      true,
                                      phi::errors::InvalidArgument(
                                          "shardid=%d, k=%d, merge_num=%d.",
                                          shard_id,
                                          k,
                                          merge_num));
                    break;
                  }
                  if (key < min_key) {
                    ++i;
                    continue;
                  }
                }
                if (min_key != key) {
                  last_key = merge_values.keys[pos];
                  shard_keys[dedup_index] = last_key;
                  shard_values[dedup_index] =
                      CONV2FEATURE_PTR(merge_values.values[pos]);
                  ++dedup_index;
                }
                pos = -1;
                ++k;
                ++ranks_pos[sel_rank];
              }
              uint64_t& key = shard_keys[dedup_size - 1];
              while (k < merge_num) {
                if (pos == -1) {
                  for (int rank = 0; rank < num_ranks; ++rank) {
                    size_t& max = merge_values.offsets[rank + 1];
                    size_t& off = ranks_pos[rank];
                    while (off < max) {
                      auto& mkey = merge_values.keys[off];
                      if (key == mkey || last_key == mkey || min_key == mkey) {
                        ++k;
                        ++off;
                        continue;
                      }
                      if (pos == -1 || min_key > mkey) {
                        min_key = mkey;
                        pos = off;
                        sel_rank = rank;
                      }
                      break;
                    }
                  }
                  if (pos == -1) {
                    PADDLE_ENFORCE_EQ((k == merge_num),
                                      true,
                                      phi::errors::InvalidArgument(
                                          "shardid=%d, k=%d, merge_num=%d.",
                                          shard_id,
                                          k,
                                          merge_num));
                    break;
                  }
                }
                last_key = merge_values.keys[pos];
                shard_keys[dedup_index] = last_key;
                shard_values[dedup_index] =
                    CONV2FEATURE_PTR(merge_values.values[pos]);
                ++dedup_index;
                pos = -1;
                ++k;
                ++ranks_pos[sel_rank];
              }
            }
            shard_keys.resize(dedup_index);
            shard_values.resize(dedup_index);
          },
          shard_id,
          dim_id));
    }
  }
  for (auto& f : task_futures) {
    f.wait();
  }
  task_futures.clear();
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  uint64_t total_key = 0;
  for (int shard_id = 0; shard_id < thread_keys_shard_num_; ++shard_id) {
    for (int dim_id = 0; dim_id < multi_mf_dim_; ++dim_id) {
      total_key += gpu_task->feature_dim_keys_[shard_id][dim_id].size();
    }
  }
  timeline.Pause();
  VLOG(0) << "passid=" << gpu_task->pass_id_
          << ", merge pull sparse from CpuPS into GpuPS total keys "
          << total_key << ", cost " << timeline.ElapsedSec()
          << " seconds, barrier span: " << barrier_span;
#endif
}
L
lxsbupt 已提交
1046 1047 1048 1049 1050 1051
void PSGPUWrapper::divide_to_device(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
  int device_num = heter_devices_.size();
  std::vector<std::future<void>> task_futures;
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;
Y
yaoxuefeng 已提交
1052

L
lxsbupt 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
  // auto& device_mutex = gpu_task->mutex_;

  if (multi_mf_dim_) {
    for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
      device_dim_keys[dev].resize(multi_mf_dim_);
      device_dim_ptr[dev].resize(multi_mf_dim_);
    }
  }

  timeline.Start();
1066 1067 1068 1069 1070
  auto build_pull_dynamic_mf_func = [this,
                                     device_num,
                                     &local_dim_keys,
                                     &local_dim_ptr,
                                     &device_dim_keys,
Y
yaoxuefeng 已提交
1071 1072
                                     &device_dim_ptr,
                                     &device_dim_mutex](int i, int j) {
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    thread_local std::vector<std::vector<uint32_t>> task_pos(device_num);
    auto& h_dim_keys = local_dim_keys[i][j];
    size_t total_keys_len = h_dim_keys.size();
    for (int i = 0; i < device_num; ++i) {
      task_pos[i].reserve((total_keys_len + device_num - 1) / device_num);
      task_pos[i].clear();
    }
    for (size_t k = 0; k < total_keys_len; k++) {
      int shard = h_dim_keys[k] % device_num;
      task_pos[shard].push_back(k);
1083
    }
1084
    auto& h_dim_ptrs = local_dim_ptr[i][j];
Y
yaoxuefeng 已提交
1085
    // allocate local keys to devices
L
lxsbupt 已提交
1086 1087
    std::vector<int> shuffle_device = shuffle_int_vector(device_num);
    for (auto dev : shuffle_device) {
Y
yaoxuefeng 已提交
1088
      device_dim_mutex[dev][j]->lock();
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      auto& dev_pos = task_pos[dev];
      size_t len = dev_pos.size();
      auto& d_dim_keys = device_dim_keys[dev][j];
      auto& d_dim_ptr = device_dim_ptr[dev][j];
      size_t cur = d_dim_keys.size();
      size_t total = cur + len;
      d_dim_keys.resize(total);
      d_dim_ptr.resize(total);
      for (size_t k = 0; k < len; ++k) {
        auto& pos = dev_pos[k];
        d_dim_keys[cur + k] = h_dim_keys[pos];
        CHECK(h_dim_ptrs[pos] != 0)
            << "total=" << total_keys_len << ", pos=" << pos << ", k=" << k
            << ", len=" << len;
        d_dim_ptr[cur + k] = h_dim_ptrs[pos];
1104
      }
Y
yaoxuefeng 已提交
1105
      device_dim_mutex[dev][j]->unlock();
1106 1107
    }
  };
L
lxsbupt 已提交
1108 1109

  if (multi_mf_dim_) {
1110
    task_futures.clear();
L
lxsbupt 已提交
1111 1112
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
1113 1114 1115
        int tid = (i * multi_mf_dim_ + j) % device_num_;
        task_futures.emplace_back(
            cpu_work_pool_[tid]->enqueue(build_pull_dynamic_mf_func, i, j));
L
lxsbupt 已提交
1116 1117
      }
    }
1118 1119
    for (auto& f : task_futures) {
      f.wait();
L
lxsbupt 已提交
1120 1121 1122
    }
  }
  timeline.Pause();
1123 1124
  VLOG(1) << "passid=" << gpu_task->pass_id_
          << ", GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
L
lxsbupt 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
          << " seconds.";
}

void PSGPUWrapper::PrepareGPUTask(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
  int device_num = heter_devices_.size();
  std::vector<std::thread> threads;
  std::vector<std::future<void>> task_futures;
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  // auto& device_mutex = gpu_task->mutex_;

  timeline.Start();
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;

1147 1148 1149 1150 1151 1152 1153
  auto build_func = [device_num,
                     record_status,
                     &pass_values,
                     &local_keys,
                     &local_ptr,
                     &device_task_keys,
                     &device_task_ptrs](int i) {
T
Thunderbrook 已提交
1154
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
1155
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
1156
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
1157 1158 1159
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
1160
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
1161
#endif
1162 1163 1164 1165 1166 1167

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
1168
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
1184
#endif
T
Thunderbrook 已提交
1185 1186 1187
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
1188 1189
      int tid = i % device_num_;
      task_futures.emplace_back(cpu_work_pool_[tid]->enqueue(build_func, i));
T
Thunderbrook 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
1203 1204 1205 1206
  auto calc_prefix_func = [this,
                           &prefix_sum,
                           &device_keys,
                           &device_vals,
T
Thunderbrook 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
1228 1229 1230 1231 1232
  auto prepare_dev_value_func = [device_num,
                                 &prefix_sum,
                                 &device_keys,
                                 &device_vals,
                                 &device_task_keys,
T
Thunderbrook 已提交
1233 1234 1235
                                 &device_task_ptrs](int dev, int shard_id) {
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
1236

T
Thunderbrook 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
1260 1261
        }
      }
T
Thunderbrook 已提交
1262
    }
T
Thunderbrook 已提交
1263
#endif
T
Thunderbrook 已提交
1264
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
1265
  };
L
lxsbupt 已提交
1266
  if (!multi_mf_dim_) {
T
Thunderbrook 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
1277 1278
  }
  timeline.Pause();
1279 1280
  VLOG(0) << "passid=" << gpu_task->pass_id_
          << ", GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
1281
          << " seconds.";
Y
yaoxuefeng 已提交
1282 1283
}

1284
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
1285
  int device_num = heter_devices_.size();
L
lxsbupt 已提交
1286 1287
  platform::Timer stagetime;
  stagetime.Start();
T
Thunderbrook 已提交
1288

1289
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
1290
  size_t size_max = 0;
Y
yaoxuefeng 已提交
1291 1292 1293 1294 1295 1296 1297

  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      VLOG(1) << i << " card with dynamic mf dim: " << index_dim_vec_[j]
              << " dim index: " << j << " contains feasign nums: "
              << gpu_task->device_dim_ptr_[i][j].size();
1298
    }
1299
    VLOG(1) << i << " card with dynamic mf contains feasign nums total: "
Y
yaoxuefeng 已提交
1300 1301
            << feature_keys_count[i];
    size_max = std::max(size_max, feature_keys_count[i]);
T
Thunderbrook 已提交
1302
  }
1303
  if (size_max <= 0) {
1304
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
1305 1306
    return;
  }
D
danleifeng 已提交
1307
  auto accessor_wrapper_ptr =
D
danleifeng 已提交
1308
      GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
L
lxsbupt 已提交
1309 1310 1311
  if (HeterPs_ == NULL) {
    HeterPs_ = HeterPsBase::get_instance(
        size_max, resource_, fleet_config_, accessor_class_, optimizer_type_);
F
Fan Zhang 已提交
1312
#ifdef PADDLE_WITH_CUDA
L
lxsbupt 已提交
1313 1314 1315 1316
    HeterPs_->set_nccl_comm_and_size(
        inner_comms_, inter_comms_, node_size_, rank_id_);
    HeterPs_->set_sparse_sgd(optimizer_config_);
    HeterPs_->set_embedx_sgd(optimizer_config_);
F
Fan Zhang 已提交
1317
#endif
L
lxsbupt 已提交
1318 1319
  }
  stagetime.Pause();
1320
  VLOG(1) << "passid=" << gpu_task->pass_id_ << ", card: "
L
lxsbupt 已提交
1321 1322 1323
          << " BuildGPUTask create HeterPs_ costs: " << stagetime.ElapsedSec()
          << " s.";
  stagetime.Start();
Z
zmxdream 已提交
1324

L
lxsbupt 已提交
1325
  auto build_dynamic_mf_func = [this, &gpu_task, &accessor_wrapper_ptr](
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
                                   const int i,
                                   const size_t tid,
                                   const size_t once_gpu_copy) {
    //    VLOG(0) << "begin build_dynamic_mf_func tid=" << tid << ", i=" << i;
    for (int j = 0; j < multi_mf_dim_; j++) {
      auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
      int mf_dim = this->index_dim_vec_[j];
      size_t feature_value_size =
          accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
      size_t len = device_dim_ptrs.size();
      size_t start = tid * once_gpu_copy;
      while (start < len) {
        size_t real_len =
            (len - start) > once_gpu_copy ? once_gpu_copy : (len - start);
        size_t end = start + real_len;
        std::shared_ptr<char> build_values(
            new char[feature_value_size * real_len],
            [](char* p) { delete[] p; });
        char* test_build_values = build_values.get();
        for (size_t k = start; k < end; k++) {
D
danleifeng 已提交
1346
#ifdef PADDLE_WITH_PSLIB
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
          float* val = reinterpret_cast<float*>(
              test_build_values + (k - start) * feature_value_size);
          float* ptr_val = device_dim_ptrs[k]->data();
          size_t dim = device_dim_ptrs[k]->size();
          val->delta_score =
              ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                          DownpourCtrDymfFeatureValue::delta_score_index()];
          val->show = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                  DownpourCtrDymfFeatureValue::show_index()];
          val->clk = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                 DownpourCtrDymfFeatureValue::click_index()];
          val->slot = static_cast<int>(
              ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                          DownpourCtrDymfFeatureValue::slot_index()]);
          val->lr = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                DownpourCtrDymfFeatureValue::embed_w_index()];
          val->lr_g2sum =
              ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                          DownpourCtrDymfFeatureValue::embed_g2sum_index()];
          // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
Y
yaoxuefeng 已提交
1367
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
                      DownpourCtrDymfFeatureValue::mf_dim_index()] =
              static_cast<float>(mf_dim);
          val->mf_dim = mf_dim;
          if (dim > 8) {  // CpuPS alreay expand as mf_dim
            val->mf_size = mf_dim + 1;
            for (int x = 0; x < val->mf_dim + 1; x++) {
              val->mf[x] = ptr_val[x + 8];
            }
          } else {
            val->mf_size = 0;
            for (int x = 0; x < val->mf_dim + 1; x++) {
              val->mf[x] = 0;
            }
          }
          VLOG(5) << "build " << k << " : "
                  << feature_value_accessor_.ParseToString(
                         val,
                         feature_value_accessor_.common_feature_value.Dim(
                             mf_dim));
D
danleifeng 已提交
1387 1388
#endif
#ifdef PADDLE_WITH_PSCORE
1389 1390 1391 1392
          void* val = reinterpret_cast<float*>(
              test_build_values + (k - start) * feature_value_size);
          accessor_wrapper_ptr->BuildFill(
              val, device_dim_ptrs[k], cpu_table_accessor_, mf_dim);
D
danleifeng 已提交
1393
#endif
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        }
        task_info task;
        task.build_values = build_values;
        task.offset = start;
        task.device_id = i;
        task.multi_mf_dim = j;
        task.start = 0;
        task.end = static_cast<int>(real_len);
        cpu_reday_channels_[i]->Put(task);
        // step
        start = start + (once_gpu_copy * cpu_device_thread_num_);
      }
Y
yaoxuefeng 已提交
1406
    }
1407
    //    VLOG(0) << "end build_dynamic_mf_func tid=" << tid << ", i=" << i;
Z
zmxdream 已提交
1408
  };
Y
yaoxuefeng 已提交
1409

L
lxsbupt 已提交
1410 1411 1412 1413 1414
  auto build_dymf_hbm_pool = [this,
                              &gpu_task,
                              &accessor_wrapper_ptr,
                              &feature_keys_count](int i) {
    platform::CUDADeviceGuard guard(resource_->dev_id(i));
1415 1416 1417 1418

    platform::Timer stagetime;
    platform::Timer timer;
    timer.Start();
L
lxsbupt 已提交
1419 1420 1421 1422 1423 1424 1425
    // reset table
    this->HeterPs_->reset_table(i,
                                feature_keys_count[i],
                                optimizer_config_,
                                optimizer_config_,
                                infer_mode_);
    // insert hbm table
1426
    stagetime.Start();
Z
zmxdream 已提交
1427
    for (int j = 0; j < multi_mf_dim_; j++) {
L
lxsbupt 已提交
1428 1429 1430 1431 1432 1433 1434
      auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
      size_t len = device_dim_keys.size();
      int mf_dim = this->index_dim_vec_[j];
      size_t feature_value_size =
          accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
      this->hbm_pools_[i * this->multi_mf_dim_ + j]->reset(len,
                                                           feature_value_size);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
      this->HeterPs_->build_ps(
          i,
          device_dim_keys.data(),
          this->hbm_pools_[i * this->multi_mf_dim_ + j]->mem(),
          len,
          feature_value_size,
          500000,
          2);
      if (device_dim_keys.size() > 0) {
        VLOG(3) << "show table: " << i
                << " table kv size: " << device_dim_keys.size()
                << "dim: " << this->index_dim_vec_[j] << " len: " << len;
        HeterPs_->show_one_table(i);
      }
L
lxsbupt 已提交
1449
    }
1450 1451 1452 1453
    stagetime.Pause();
    auto build_span = stagetime.ElapsedSec();

    stagetime.Start();
L
lxsbupt 已提交
1454
    // build feature table
1455
    if (slot_num_for_pull_feature_ > 0 &&
L
lxsbupt 已提交
1456 1457 1458 1459 1460
        (FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode::
                                            MEM_EMB_FEATURE_AND_GPU_GRAPH ||
         FLAGS_gpugraph_storage_mode ==
             paddle::framework::GpuGraphStorageMode::
                 SSD_EMB_AND_MEM_FEATURE_GPU_GRAPH)) {
1461 1462 1463 1464
      auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
      std::vector<GpuPsCommGraphFea>* tmp =
          (std::vector<GpuPsCommGraphFea>*)gpu_task->sub_graph_feas;
      gpu_graph_ptr->build_gpu_graph_fea((*tmp)[i], i);
Z
zmxdream 已提交
1465
    }
1466 1467
    stagetime.Pause();
    auto build_feature_span = stagetime.ElapsedSec();
Y
yaoxuefeng 已提交
1468

1469 1470
    size_t total_len = 0;
    stagetime.Start();
L
lxsbupt 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    struct task_info task;
    while (cpu_reday_channels_[i]->Get(task)) {
      auto hbm = this->hbm_pools_[task.device_id * this->multi_mf_dim_ +
                                  task.multi_mf_dim]
                     ->mem();
      int mf_dim = this->index_dim_vec_[task.multi_mf_dim];
      size_t feature_value_size =
          accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
      auto hbm_start = hbm + task.offset * feature_value_size;
      CUDA_CHECK(
          cudaMemcpy(hbm_start,
                     task.build_values.get() + task.start * feature_value_size,
                     (task.end - task.start) * feature_value_size,
                     cudaMemcpyHostToDevice));
1485
      total_len += (task.end - task.start);
L
lxsbupt 已提交
1486 1487
    }
    stagetime.Pause();
1488 1489
    timer.Pause();

1490
    VLOG(1) << "card: " << i
1491 1492 1493 1494
            << " BuildGPUTask build_ps total costs: " << timer.ElapsedSec()
            << ", copy: " << stagetime.ElapsedSec() << ", table: " << build_span
            << ", feature: " << build_feature_span
            << ", feasign: " << total_len;
L
lxsbupt 已提交
1495
  };
Y
yaoxuefeng 已提交
1496

L
lxsbupt 已提交
1497 1498 1499 1500
  std::vector<std::future<void>> cpu_task_futures;
  std::vector<std::future<void>> gpu_task_futures;

  int once_gpu_copy = 64 * 1024;
Z
zmxdream 已提交
1501
  for (int i = 0; i < device_num; i++) {
L
lxsbupt 已提交
1502 1503 1504
    cpu_reday_channels_[i]->Open();
    gpu_task_futures.emplace_back(
        hbm_thread_pool_[i]->enqueue(build_dymf_hbm_pool, i));
1505 1506 1507
    for (size_t tid = 0; tid < cpu_device_thread_num_; ++tid) {
      cpu_task_futures.emplace_back(cpu_work_pool_[i]->enqueue(
          build_dynamic_mf_func, i, tid, once_gpu_copy));
Y
yaoxuefeng 已提交
1508
    }
Z
zmxdream 已提交
1509
  }
L
lxsbupt 已提交
1510 1511 1512 1513

  stagetime.Start();
  for (auto& f : cpu_task_futures) {
    f.wait();
Z
zmxdream 已提交
1514
  }
L
lxsbupt 已提交
1515 1516
  cpu_task_futures.clear();
  stagetime.Pause();
1517 1518
  VLOG(1) << "passid=" << gpu_task->pass_id_
          << ", BuildGPUTask build_dynamic_mf_func "
L
lxsbupt 已提交
1519
          << " cost " << stagetime.ElapsedSec() << " s.";
Y
yaoxuefeng 已提交
1520
  for (int i = 0; i < device_num; i++) {
L
lxsbupt 已提交
1521
    cpu_reday_channels_[i]->Close();
Y
yaoxuefeng 已提交
1522
  }
L
lxsbupt 已提交
1523 1524 1525
  stagetime.Start();
  for (auto& f : gpu_task_futures) {
    f.wait();
T
Thunderbrook 已提交
1526
  }
L
lxsbupt 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
  gpu_task_futures.clear();
  if (FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode::
                                         MEM_EMB_FEATURE_AND_GPU_GRAPH ||
      FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode::
                                         SSD_EMB_AND_MEM_FEATURE_GPU_GRAPH) {
    std::vector<GpuPsCommGraphFea>* tmp =
        (std::vector<GpuPsCommGraphFea>*)gpu_task->sub_graph_feas;
    delete tmp;
    gpu_task->sub_graph_feas = NULL;
  }
  stagetime.Pause();
1538
  VLOG(1) << "  build_dymf_hbm_pool "
L
lxsbupt 已提交
1539
          << " cost " << stagetime.ElapsedSec() << " s.";
1540 1541 1542 1543 1544 1545 1546 1547
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
1548
  VLOG(1) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";
L
lxsbupt 已提交
1549 1550 1551 1552 1553
  gpu_graph_mode_ = dataset_->GetGpuGraphMode();
  if (dataset_->GetMemoryDataSize() == 0) {
    VLOG(0) << "GetMemoryDataSize == 0";
    return;
  }
1554 1555 1556 1557
  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }
Y
yaoxuefeng 已提交
1558

L
lxsbupt 已提交
1559
  InitSlotInfo();
1560
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
1561 1562 1563 1564
  if (FLAGS_gpugraph_storage_mode != GpuGraphStorageMode::WHOLE_HBM) {
    std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
    gpu_task->Reset();
    gpu_task->pass_id_ = (uint16_t)(dataset_->GetPassID());
1565
    data_ready_channel_->Put(std::make_pair(gpu_task, dataset_));
L
lxsbupt 已提交
1566 1567 1568
  } else if (hbm_sparse_table_initialized_ == false) {
    SparseTableToHbm();
  }
1569 1570 1571 1572
#else
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  gpu_task->pass_id_ = (uint16_t)(dataset_->GetPassID());
1573
  data_ready_channel_->Put(std::make_pair(gpu_task, dataset_));
1574
#endif
1575 1576 1577 1578 1579
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
1580
  VLOG(3) << "start build CPU ps thread.";
1581
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
L
lxsbupt 已提交
1582
  buildpull_threads_ = std::thread([this] { build_pull_thread(); });
1583 1584
}

1585 1586
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
1587
  while (running_) {
1588 1589
    std::pair<std::shared_ptr<HeterContext>, Dataset*> task =
        std::make_pair(nullptr, nullptr);
1590
    std::shared_ptr<HeterContext> gpu_task = nullptr;
1591
    if (!data_ready_channel_->Get(task)) {
1592 1593
      continue;
    }
1594
    gpu_task = task.first;
1595
    VLOG(3) << "thread PreBuildTask start.";
1596 1597 1598
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
1599
    PreBuildTask(gpu_task, task.second);
1600
    timer.Pause();
1601 1602
    VLOG(1) << "passid=" << gpu_task->pass_id_
            << ", thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
1603
            << " s";
1604 1605 1606 1607 1608
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

L
lxsbupt 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
void PSGPUWrapper::build_pull_thread() {
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!buildcpu_ready_channel_->Get(gpu_task)) {
      continue;
    }
    VLOG(3) << "thread build pull start.";
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
    BuildPull(gpu_task);
    timer.Pause();
1621 1622 1623
    VLOG(0) << "passid=" << gpu_task->pass_id_
            << ", thread BuildPull end, cost time: " << timer.ElapsedSec()
            << "s";
L
lxsbupt 已提交
1624 1625 1626 1627 1628
    buildpull_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

1629 1630 1631 1632
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // ins and pre_build end
L
lxsbupt 已提交
1633
  if (!buildpull_ready_channel_->Get(gpu_task)) {
1634
    return;
1635
  }
1636

1637
  VLOG(1) << "passid=" << gpu_task->pass_id_ << ", PrepareGPUTask start.";
1638 1639
  platform::Timer timer;
  timer.Start();
1640 1641 1642 1643 1644
  // merge pull
  MergePull(gpu_task);
  if (multi_mf_dim_) {
    divide_to_device(gpu_task);
  } else {
L
lxsbupt 已提交
1645 1646
    PrepareGPUTask(gpu_task);
  }
1647 1648
  BuildGPUTask(gpu_task);
  timer.Pause();
1649 1650
  VLOG(1) << "passid=" << gpu_task->pass_id_
          << ", PrepareGPUTask + BuildGPUTask end, cost time: "
L
lxsbupt 已提交
1651
          << timer.ElapsedSec() << "s";
1652 1653

  current_task_ = gpu_task;
1654 1655 1656 1657
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
W
wangzhen38 已提交
1658
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
1659 1660 1661
  if (FLAGS_gpugraph_storage_mode == GpuGraphStorageMode::WHOLE_HBM) {
    return;
  }
W
wangzhen38 已提交
1662
#endif
1663 1664 1665 1666 1667
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
1668

D
danleifeng 已提交
1669
  debug_gpu_memory_info("befor build task");
1670
  build_task();
D
danleifeng 已提交
1671
  debug_gpu_memory_info("after build task");
1672
  timer.Pause();
1673 1674 1675 1676 1677

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }
D
danleifeng 已提交
1678
  if (FLAGS_gpugraph_dedup_pull_push_mode) {
1679 1680
    VLOG(0) << "passid=" << current_task_->pass_id_
            << ", BeginPass end, cost time: " << timer.ElapsedSec()
D
danleifeng 已提交
1681 1682 1683
            << "s, enable pull push dedup mode="
            << FLAGS_gpugraph_dedup_pull_push_mode;
  } else {
1684 1685
    VLOG(0) << "passid=" << current_task_->pass_id_
            << ", BeginPass end, cost time: " << timer.ElapsedSec() << "s";
D
danleifeng 已提交
1686
  }
1687 1688 1689
}

void PSGPUWrapper::EndPass() {
W
wangzhen38 已提交
1690
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
1691 1692 1693
  if (FLAGS_gpugraph_storage_mode == GpuGraphStorageMode::WHOLE_HBM) {
    return;
  }
W
wangzhen38 已提交
1694
#endif
1695 1696 1697
  if (current_task_ == nullptr) {
    return;
  }
L
lxsbupt 已提交
1698 1699 1700 1701
  platform::Timer stagetime;
  stagetime.Start();
  HbmToSparseTable();
  stagetime.Pause();
1702 1703
  VLOG(0) << "passid=" << current_task_->pass_id_
          << ", EndPass HbmToSparseTable cost time: " << stagetime.ElapsedSec()
L
lxsbupt 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
          << "s";

  gpu_task_pool_.Push(current_task_);
  current_task_ = nullptr;
  // fleet_ptr->pslib_ptr_->_worker_ptr->release_table_mutex(this->table_id_);
}

void PSGPUWrapper::SparseTableToHbm() {
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  size_t device_num = heter_devices_.size();
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
  gpu_task->pass_id_ = (uint16_t)(dataset_->GetPassID());
  auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
1718
  auto node_to_id = gpu_graph_ptr->node_to_id;
L
lxsbupt 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
  auto edge_to_id = gpu_graph_ptr->edge_to_id;
  std::vector<uint64_t> vec_data = gpu_graph_ptr->get_graph_total_keys();

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
    }
  }

  add_key_to_local(vec_data);
  add_key_to_gputask(gpu_task);
  BuildPull(gpu_task);
1733
  MergePull(gpu_task);
L
lxsbupt 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  if (!multi_mf_dim_) {
    PrepareGPUTask(gpu_task);
  } else {
    divide_to_device(gpu_task);
  }
  BuildGPUTask(gpu_task);
  current_task_ = gpu_task;
  hbm_sparse_table_initialized_ = true;
}

void PSGPUWrapper::HbmToSparseTable() {
  // hbm no update not need dump
  if (grad_push_count_ == 0) {
    return;
  }
  grad_push_count_ = 0;

1751 1752 1753 1754 1755 1756
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
Y
yaoxuefeng 已提交
1757

1758
  for (size_t i = 0; i < heter_devices_.size(); i++) {
Y
yaoxuefeng 已提交
1759 1760 1761 1762 1763
    for (int j = 0; j < multi_mf_dim_; j++) {
      keysize_max =
          std::max(keysize_max, current_task_->device_dim_keys_[i][j].size());
    }
  }
D
danleifeng 已提交
1764
  auto accessor_wrapper_ptr =
D
danleifeng 已提交
1765
      GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
L
lxsbupt 已提交
1766 1767 1768 1769 1770

  int once_cpu_num = 16 * 1024;
  int once_gpu_copy = 8 * once_cpu_num;

  auto dump_pool_to_cpu_func = [this, &accessor_wrapper_ptr, once_cpu_num](
1771 1772 1773
                                   int i, size_t once_gpu_copy) {
    platform::Timer tm;
    tm.Start();
Y
yaoxuefeng 已提交
1774
    PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(this->resource_->dev_id(i)));
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    size_t total_len = 0;
    // multi mf dim
    for (int j = 0; j < this->multi_mf_dim_; ++j) {
      auto& hbm_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
      // ============ multi-thread process feasign============
      int mf_dim = this->index_dim_vec_[j];
      size_t feature_value_size =
          accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);

      auto& device_keys = this->current_task_->device_dim_keys_[i][j];
      size_t len = device_keys.size();
      size_t start = 0;
      while (start < len) {
        size_t real_len =
            (len - start) >= once_gpu_copy ? once_gpu_copy : (len - start);
        size_t end = start + real_len;
        std::shared_ptr<char> build_values(
            new char[feature_value_size * real_len],
            [](char* p) { delete[] p; });
        uint64_t offset = start * feature_value_size;
        char* test_build_values = build_values.get();

        cudaMemcpy(test_build_values,
                   hbm_pool->mem() + offset,
                   feature_value_size * real_len,
                   cudaMemcpyDeviceToHost);
        for (size_t k = 0; k < real_len; k = k + once_cpu_num) {
          struct task_info task;
          task.build_values = build_values;
          task.offset = start;
          task.device_id = i;
          task.multi_mf_dim = j;
          task.start = k;
          task.end =
              (k + once_cpu_num) < real_len ? (k + once_cpu_num) : (real_len);
          cpu_reday_channels_[i]->Put(task);
        }
        start = end;
      }
      total_len += len;
L
lxsbupt 已提交
1816
    }
1817 1818 1819
    tm.Pause();
    VLOG(1) << "dump_pool_to_cpu_func i=" << i << ", total len=" << total_len
            << ", span=" << tm.ElapsedSec();
L
lxsbupt 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
  };
  auto cpu_func = [this, &accessor_wrapper_ptr](int j) {
    struct task_info task;
    while (cpu_reday_channels_[j]->Get(task)) {
      auto& device_keys =
          this->current_task_
              ->device_dim_keys_[task.device_id][task.multi_mf_dim];
      char* test_build_values = task.build_values.get();
      int mf_dim = this->index_dim_vec_[task.multi_mf_dim];
      size_t feature_value_size =
          accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
      uint64_t unuse_key = std::numeric_limits<uint64_t>::max();
      for (int i = task.start; i < task.end; ++i) {
        if (device_keys[i + task.offset] == unuse_key) {
          continue;
        }
        size_t local_offset = i * feature_value_size;
        float* gpu_val =
            reinterpret_cast<float*>(test_build_values + local_offset);
1839
#ifdef PADDLE_WITH_PSLIB
1840
        // TODO(lxsbupt): PSLIB DumpFill
D
danleifeng 已提交
1841 1842
#endif
#ifdef PADDLE_WITH_PSCORE
L
lxsbupt 已提交
1843
        accessor_wrapper_ptr->DumpFill(gpu_val, cpu_table_accessor_, mf_dim);
D
danleifeng 已提交
1844
#endif
L
lxsbupt 已提交
1845
      }
Y
yaoxuefeng 已提交
1846 1847
    }
  };
L
lxsbupt 已提交
1848 1849 1850 1851 1852
  platform::Timer timer;
  timer.Start();
  std::vector<std::future<void>> cpu_task_futures;
  std::vector<std::future<void>> gpu_task_futures;
  size_t device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
1853
  if (multi_mf_dim_) {
1854
    VLOG(1) << "psgpu wrapper dump pool: multi_mf_dim_: " << multi_mf_dim_;
Y
yaoxuefeng 已提交
1855
    for (size_t i = 0; i < device_num; i++) {
L
lxsbupt 已提交
1856
      cpu_reday_channels_[i]->Open();
1857 1858 1859
      gpu_task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(
          dump_pool_to_cpu_func, i, once_gpu_copy));
      for (size_t j = 0; j < cpu_device_thread_num_; j++) {
L
lxsbupt 已提交
1860 1861
        cpu_task_futures.emplace_back(cpu_work_pool_[i]->enqueue(cpu_func, i));
      }
Y
yaoxuefeng 已提交
1862
    }
1863
  }
L
lxsbupt 已提交
1864 1865 1866 1867
  for (auto& f : gpu_task_futures) {
    f.wait();
  }
  timer.Pause();
1868 1869
  VLOG(1) << "passid=" << current_task_->pass_id_
          << ", EndPass  dump_pool_to_cpu_func "
L
lxsbupt 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
          << " cost " << timer.ElapsedSec() << " s.";
  for (size_t i = 0; i < device_num; i++) {
    cpu_reday_channels_[i]->Close();
  }
  gpu_task_futures.clear();
  timer.Start();
  for (auto& f : cpu_task_futures) {
    f.wait();
  }
  cpu_task_futures.clear();
  timer.Pause();
1881
  VLOG(1) << "passid=" << current_task_->pass_id_ << ", EndPass  cpu_func "
L
lxsbupt 已提交
1882
          << " cost " << timer.ElapsedSec() << " s.";
1883 1884 1885
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
L
lxsbupt 已提交
1886
}
1887

L
lxsbupt 已提交
1888 1889 1890
void PSGPUWrapper::DumpToMem() {
  if (FLAGS_gpugraph_storage_mode == GpuGraphStorageMode::WHOLE_HBM) {
    this->HbmToSparseTable();
Y
yaoxuefeng 已提交
1891
  }
T
Thunderbrook 已提交
1892 1893 1894 1895 1896 1897 1898 1899
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
D
danleifeng 已提交
1900 1901
  VLOG(0) << "Warning:: recommand use pull_gpups_sparse op instead. This "
             "PullSparse is not used.";
Y
yaoxuefeng 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const std::vector<int>& slot_dim,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();

D
danleifeng 已提交
1916
  auto accessor_wrapper_ptr =
D
danleifeng 已提交
1917 1918 1919
      GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
  size_t feature_value_size =
      accessor_wrapper_ptr->GetPullValueSize(max_mf_dim_);
D
danleifeng 已提交
1920
  VLOG(3) << "PullSparse max_dim:" << max_mf_dim_
D
danleifeng 已提交
1921
          << " pull_feature_value_size:" << pull_type_size_;
Y
yaoxuefeng 已提交
1922 1923 1924 1925 1926

  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
D
danleifeng 已提交
1927
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
1928 1929
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
D
danleifeng 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    if (FLAGS_gpugraph_dedup_pull_push_mode > 0) {
      auto& dev = device_caches_[devid_2_index];
      int slot_num = static_cast<int>(slot_lengths.size());
      std::vector<int64_t> slot_lengths_lod;
      slot_lengths_lod.reserve(slot_num + 1);
      slot_lengths_lod.push_back(0);

      int64_t total_length = 0;
      for (int i = 0; i < slot_num; ++i) {
        total_length += slot_lengths[i];
        slot_lengths_lod.push_back(total_length);
      }
      dev.total_key_length = total_length;
      VLOG(3) << "[" << device_id << "]Begin copy keys, key_num["
              << total_length << "] dedup mode";

1946
      auto stream = dynamic_cast<phi::GPUContext*>(
D
danleifeng 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
                        platform::DeviceContextPool::Instance().Get(place))
                        ->stream();

      uint64_t* total_keys = dev.keys_tensor.mutable_data<uint64_t>(
          (total_length * 3) * sizeof(uint64_t), place);

      int* gpu_slot_dims = dev.dims_tensor.mutable_data<int>(
          slot_dim.size() * sizeof(int), place);
      uint64_t** gpu_keys = dev.keys_ptr_tensor.mutable_data<uint64_t*>(
          keys.size() * sizeof(uint64_t*), place);

      int64_t* slot_lens = dev.slot_lens.mutable_data<int64_t>(
          (slot_num + 1) * sizeof(int64_t), place);
      cudaMemcpyAsync(gpu_keys,
                      keys.data(),
                      keys.size() * sizeof(uint64_t*),
                      cudaMemcpyHostToDevice,
                      stream);
      cudaMemcpyAsync(slot_lens,
                      slot_lengths_lod.data(),
                      slot_lengths_lod.size() * sizeof(int64_t),
                      cudaMemcpyHostToDevice,
                      stream);

      cudaMemcpyAsync(gpu_slot_dims,
                      slot_dim.data(),
                      slot_dim.size() * sizeof(int),
                      cudaMemcpyHostToDevice,
                      stream);
      float** gpu_values = dev.values_ptr_tensor.mutable_data<float*>(
          values.size() * sizeof(float*), place);
      cudaMemcpyAsync(gpu_values,
                      values.data(),
                      values.size() * sizeof(float*),
                      cudaMemcpyHostToDevice,
                      stream);

      int* key2slot = dev.keys2slot.mutable_data<int>(
          (total_length * 5) * sizeof(int), place);

      this->CopyKeys(place,
                     gpu_keys,
                     total_keys,
                     slot_lens,
                     slot_num,
                     static_cast<int>(total_length),
                     key2slot);

      uint32_t* d_restore_idx =
          reinterpret_cast<uint32_t*>(&key2slot[total_length]);
      uint32_t* d_sorted_idx =
          reinterpret_cast<uint32_t*>(&d_restore_idx[total_length]);
      uint32_t* d_offset =
          reinterpret_cast<uint32_t*>(&d_sorted_idx[total_length]);
      uint32_t* d_merged_cnts =
          reinterpret_cast<uint32_t*>(&d_offset[total_length]);
      uint64_t* d_merged_keys =
          reinterpret_cast<uint64_t*>(&total_keys[total_length]);
      uint64_t* d_sorted_keys =
          reinterpret_cast<uint64_t*>(&d_merged_keys[total_length]);

      int dedup_size = HeterPs_->dedup_keys_and_fillidx(
          devid_2_index,
          static_cast<int>(total_length),
          total_keys,     // input
          d_merged_keys,  // output
          d_sorted_keys,  // sort keys
          d_restore_idx,  // pull fill idx
          d_sorted_idx,   // sort old idx
          d_offset,       // offset
          d_merged_cnts,
          FLAGS_gpugraph_dedup_pull_push_mode & 0x02);
      //      printf("device %d, end dedup_keys_and_fillidx total %d, "
      //              "dedup_size %d, slot num: %d, value size: %d\n",
      //             device_id, int(total_length), dedup_size, slot_num,
      //             int(feature_value_size));

      PADDLE_ENFORCE_GT(dedup_size,
                        0,
                        platform::errors::PreconditionNotMet(
                            "dedup keys need more than zero failed in BoxPS."));
      dev.dedup_key_length = dedup_size;

      int64_t total_bytes = dedup_size * feature_value_size;
      float* total_values_gpu =
          dev.pull_push_tensor.mutable_data<float>(total_bytes, place);
      pull_gpups_timer.Start();
      HeterPs_->pull_sparse(
          devid_2_index, d_merged_keys, total_values_gpu, dedup_size);

      // values.size() not sure equal slot_num
      accessor_wrapper_ptr->CopyForPull(place,
                                        total_keys,
                                        gpu_values,
                                        total_values_gpu,
                                        slot_lens,
                                        key2slot,
                                        max_mf_dim_ + 3,
                                        total_length,
                                        gpu_slot_dims,
                                        d_restore_idx,
                                        feature_value_size);
    } else {
      size_t total_length =
          std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
      auto buf = memory::Alloc(place, total_length * feature_value_size);
      float* total_values_gpu = reinterpret_cast<float*>(buf->ptr());
      VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
2055
      phi::DenseTensor& total_keys_tensor = keys_tensor[devid_2_index];
D
danleifeng 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
      uint64_t* total_keys =
          reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
              {int64_t(total_length), 1}, place));
      // construct slot_level lod info
      auto slot_lengths_lod = slot_lengths;
      for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
        slot_lengths_lod[i] += slot_lengths_lod[i - 1];
      }
      auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
      auto buf_length =
          memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
      uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
      int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
      cudaMemcpy(gpu_keys,
                 keys.data(),
                 keys.size() * sizeof(uint64_t*),
                 cudaMemcpyHostToDevice);
      cudaMemcpy(gpu_len,
                 slot_lengths_lod.data(),
                 slot_lengths.size() * sizeof(int64_t),
                 cudaMemcpyHostToDevice);

      auto buf_dim = memory::Alloc(place, slot_dim.size() * sizeof(int));
      int* gpu_dim = reinterpret_cast<int*>(buf_dim->ptr());
      cudaMemcpy(gpu_dim,
                 slot_dim.data(),
                 slot_dim.size() * sizeof(int),
                 cudaMemcpyHostToDevice);

      this->CopyKeys(place,
                     gpu_keys,
                     total_keys,
                     gpu_len,
                     static_cast<int>(slot_lengths.size()),
                     static_cast<int>(total_length));
      VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
              << " len: " << total_length;

      pull_gpups_timer.Start();
      HeterPs_->pull_sparse(
          devid_2_index, total_keys, total_values_gpu, total_length);

      VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
              << "]";

      accessor_wrapper_ptr->CopyForPull(place,
                                        gpu_keys,
                                        values,
                                        total_values_gpu,
                                        gpu_len,
                                        static_cast<int>(slot_lengths.size()),
                                        hidden_size,
                                        total_length,
                                        gpu_dim,
                                        feature_value_size);
Y
yaoxuefeng 已提交
2111 2112
    }
    pull_gpups_timer.Pause();
D
danleifeng 已提交
2113
#endif
F
Fan Zhang 已提交
2114 2115
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
D
danleifeng 已提交
2116 2117 2118 2119 2120 2121
    VLOG(3) << "Begine Xpu Ps PullSparse";
    size_t total_length =
        std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
    FeatureValue* total_values_gpu = nullptr;
    xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
               total_length * feature_value_size);
F
Fan Zhang 已提交
2122 2123 2124
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
2125
    phi::DenseTensor& total_keys_tensor = keys_tensor[devid_2_index];
D
danleifeng 已提交
2126 2127 2128
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
            {int64_t(total_length), 1}, place));
F
Fan Zhang 已提交
2129 2130 2131 2132 2133 2134 2135

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

F
Fan Zhang 已提交
2136 2137 2138 2139 2140
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
2141 2142
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys,
                                          keys.data(),
F
Fan Zhang 已提交
2143 2144
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
2145 2146
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len,
                                          slot_lengths_lod.data(),
F
Fan Zhang 已提交
2147 2148 2149
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

2150 2151 2152 2153
    this->CopyKeys(place,
                   xpu_keys,
                   total_keys,
                   xpu_len,
F
Fan Zhang 已提交
2154 2155 2156 2157 2158
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
2159 2160 2161
    HeterPs_->pull_sparse(devid_2_index,
                          total_keys,
                          total_values_gpu,
F
Fan Zhang 已提交
2162 2163 2164 2165 2166
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
D
danleifeng 已提交
2167 2168 2169 2170 2171 2172 2173 2174
    accessor_wrapper_ptr->CopyForPull(place,
                                      xpu_keys,
                                      values,
                                      total_values_gpu,
                                      xpu_len,
                                      static_cast<int>(slot_lengths.size()),
                                      hidden_size,
                                      total_length,
D
danleifeng 已提交
2175
                                      feature_value_size);
F
Fan Zhang 已提交
2176
#endif
T
Thunderbrook 已提交
2177 2178
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
2179
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
2180 2181
  }
  all_timer.Pause();
2182
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
2193 2194
                                  const int hidden_size,
                                  const int batch_size) {
L
lxsbupt 已提交
2195
  ++grad_push_count_;
T
Thunderbrook 已提交
2196 2197 2198
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
D
danleifeng 已提交
2199
  auto accessor_wrapper_ptr =
D
danleifeng 已提交
2200
      GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
D
danleifeng 已提交
2201
  size_t grad_value_size = accessor_wrapper_ptr->GetPushValueSize(max_mf_dim_);
D
danleifeng 已提交
2202

T
Thunderbrook 已提交
2203 2204 2205 2206
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
2207
#ifdef PADDLE_WITH_CUDA
2208
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
2209
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
D
danleifeng 已提交
2210 2211 2212 2213 2214 2215
    if (FLAGS_gpugraph_dedup_pull_push_mode > 0) {
      auto& dev = device_caches_[devid_2_index];
      int64_t total_length = dev.total_key_length;
      VLOG(3) << "Begin push sparse, key_num[" << total_length
              << "] dedup mode, device:" << device_id << ", index"
              << devid_2_index;
2216
      auto stream = dynamic_cast<phi::GPUContext*>(
D
danleifeng 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
                        platform::DeviceContextPool::Instance().Get(place))
                        ->stream();
      uint64_t* total_keys = dev.keys_tensor.data<uint64_t>();
      int* slot_dims = dev.dims_tensor.data<int>();
      int slot_num = static_cast<int>(slot_lengths.size());
      if (!dev.d_slot_vector.IsInitialized()) {
        int* buf_slot_vector =
            dev.d_slot_vector.mutable_data<int>(slot_num * sizeof(int), place);
        cudaMemcpyAsync(buf_slot_vector,
                        slot_vector_.data(),
                        slot_num * sizeof(int),
                        cudaMemcpyHostToDevice,
                        stream);
      }
T
Thunderbrook 已提交
2231

D
danleifeng 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
      const int64_t* slot_lens = dev.slot_lens.data<int64_t>();
      const int* d_slot_vector = dev.d_slot_vector.data<int>();
      const int* key2slot = dev.keys2slot.data<int>();
      float** gpu_values = dev.values_ptr_tensor.data<float*>();
      cudaMemcpyAsync(gpu_values,
                      grad_values.data(),
                      grad_values.size() * sizeof(float*),
                      cudaMemcpyHostToDevice,
                      stream);

      uint64_t* d_merged_keys = &total_keys[total_length];

      int64_t dedup_size = dev.dedup_key_length;
      int64_t total_bytes = dedup_size * grad_value_size;
      float* total_grad_values_gpu =
          dev.pull_push_tensor.mutable_data<float>(total_bytes, place);
      // dedup rate more than 3
      if (total_length > dedup_size * 3) {
        const uint32_t* d_restore_idx =
            reinterpret_cast<const uint32_t*>(&key2slot[total_length]);
        accessor_wrapper_ptr->CopyForPush(place,
                                          total_keys,
                                          gpu_values,
                                          total_grad_values_gpu,
                                          d_slot_vector,
                                          slot_lens,
                                          max_mf_dim_ + 3,
                                          total_length,
                                          dedup_size,
                                          batch_size,
                                          slot_dims,
                                          key2slot,
                                          d_restore_idx,
                                          grad_value_size);
      } else {
        const uint32_t* d_sorted_idx =
            reinterpret_cast<const uint32_t*>(&key2slot[total_length * 2]);
        const uint32_t* d_offset =
            reinterpret_cast<const uint32_t*>(&d_sorted_idx[total_length]);
        const uint32_t* d_merged_cnts =
            reinterpret_cast<const uint32_t*>(&d_offset[total_length]);
        accessor_wrapper_ptr->CopyForPush(place,
                                          d_merged_keys,
                                          gpu_values,
                                          total_grad_values_gpu,
                                          d_slot_vector,
                                          slot_lens,
                                          max_mf_dim_ + 3,
                                          total_length,
                                          dedup_size,
                                          batch_size,
                                          slot_dims,
                                          key2slot,
                                          d_sorted_idx,
                                          d_offset,
                                          d_merged_cnts,
                                          grad_value_size);
      }

      push_gpups_timer.Start();
      HeterPs_->push_sparse(devid_2_index,
                            d_merged_keys,
                            total_grad_values_gpu,
                            static_cast<int>(dedup_size));
    } else {
      int64_t total_length =
          std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
      VLOG(3) << "Begin GPUPS PushSparseGrad";

      auto buf = memory::Alloc(place, total_length * grad_value_size);
      VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_
              << "grad_value_size:" << grad_value_size;
      float* total_grad_values_gpu = reinterpret_cast<float*>(buf->ptr());

2306
      phi::DenseTensor& total_keys_tensor = keys_tensor[devid_2_index];
D
danleifeng 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
      uint64_t* total_keys =
          reinterpret_cast<uint64_t*>(total_keys_tensor.data<int64_t>());
      VLOG(3) << "Begin copy grad tensor to gpups struct";

      accessor_wrapper_ptr->CopyForPush(place,
                                        grad_values,
                                        total_grad_values_gpu,
                                        slot_lengths,
                                        total_length,
                                        batch_size,
                                        grad_value_size,
                                        slot_vector_,
                                        slot_mf_dim_vector_);

      VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
              << " len: " << total_length;
      push_gpups_timer.Start();
      HeterPs_->push_sparse(devid_2_index,
                            total_keys,
                            total_grad_values_gpu,
                            static_cast<int>(total_length));
    }
T
Thunderbrook 已提交
2329
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
2330
#endif
F
Fan Zhang 已提交
2331
  } else if (platform::is_xpu_place(place)) {
F
Fan Zhang 已提交
2332
#ifdef PADDLE_WITH_XPU_KP
F
Fan Zhang 已提交
2333 2334
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
D
danleifeng 已提交
2335 2336 2337 2338 2339 2340 2341 2342
    int64_t total_length =
        std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
    VLOG(3) << "Begin GPUPS PushSparseGrad";

    auto buf = memory::Alloc(place, total_length * grad_value_size);
    VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_
            << "grad_value_size:" << grad_value_size;
    float* total_grad_values_gpu = reinterpret_cast<float*>(buf->ptr());
2343
    phi::DenseTensor& total_keys_tensor = keys_tensor[devid_2_index];
F
Fan Zhang 已提交
2344
    uint64_t* total_keys =
D
danleifeng 已提交
2345
        reinterpret_cast<uint64_t*>(total_keys_tensor.data<int64_t>());
F
Fan Zhang 已提交
2346
    VLOG(3) << "Begin copy grad tensor to xpups struct";
D
danleifeng 已提交
2347 2348 2349 2350 2351 2352 2353 2354
    accessor_wrapper_ptr->CopyForPush(place,
                                      grad_values,
                                      total_grad_values_gpu,
                                      slot_lengths,
                                      hidden_size,
                                      total_length,
                                      batch_size,
                                      slot_vector_);
F
Fan Zhang 已提交
2355 2356 2357 2358

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
2359 2360 2361
    HeterPs_->push_sparse(devid_2_index,
                          total_keys,
                          total_grad_values_gpu,
F
Fan Zhang 已提交
2362 2363
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
2364
#endif
T
Thunderbrook 已提交
2365 2366 2367 2368 2369
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
Y
yaoxuefeng 已提交
2370 2371
  time_3 += all_timer.ElapsedSec();
  time_4 += push_gpups_timer.ElapsedSec();
2372
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
2373 2374 2375 2376 2377
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

D
danleifeng 已提交
2378
}  // namespace framework
T
Thunderbrook 已提交
2379 2380
}  // end namespace paddle
#endif