heter_context.h 8.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

T
Thunderbrook 已提交
19
#include <ThreadPool.h>
20

Y
yaoxuefeng 已提交
21
#include <algorithm>
T
Thunderbrook 已提交
22 23 24 25
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
26
#ifdef PADDLE_WITH_PSLIB
27
#include "common/common_value.h"  // NOLINT
T
Thunderbrook 已提交
28 29 30
#endif

#ifdef PADDLE_WITH_PSCORE
31
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
T
Thunderbrook 已提交
32 33
#endif

34
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
T
Thunderbrook 已提交
35 36 37
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

38 39 40 41 42 43 44 45
#ifdef PADDLE_WITH_PSLIB
#define CONV2FEATURE_PTR(ptr) \
  reinterpret_cast<paddle::ps::DownpourFixedFeatureValue**>(ptr)
#else
#define CONV2FEATURE_PTR(ptr) \
  reinterpret_cast<paddle::distributed::FixedFeatureValue*>(ptr)
#endif

T
Thunderbrook 已提交
46 47 48 49 50
namespace paddle {
namespace framework {

class HeterContext {
 public:
T
Thunderbrook 已提交
51
  virtual ~HeterContext() {
52 53 54 55 56 57 58 59 60 61 62 63
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < mutex_.size(); ++i) {
        delete mutex_[i];
      }
      mutex_.clear();
    } else {
      for (size_t i = 0; i < dim_mutex_.size(); ++i) {
        for (size_t j = 0; j < dim_mutex_[i].size(); j++) {
          delete dim_mutex_[i][j];
        }
        dim_mutex_[i].clear();
      }
64 65
    }
  }
T
Thunderbrook 已提交
66 67
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
68
  std::vector<std::vector<std::vector<FeatureKey>>> feature_dim_keys_;
T
Thunderbrook 已提交
69
  std::vector<std::vector<std::vector<FeatureKey>>> device_task_keys_;
70

T
Thunderbrook 已提交
71
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
72
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
T
Thunderbrook 已提交
73 74
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_task_ptr_;
75 76 77 78
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      value_dim_ptr_;
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_dim_ptr_;
T
Thunderbrook 已提交
79 80
#endif
#ifdef PADDLE_WITH_PSCORE
81 82
  std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> value_ptr_;
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
83
      value_dim_ptr_;
T
Thunderbrook 已提交
84 85
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
      device_task_ptr_;
86
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
87
      device_dim_ptr_;
T
Thunderbrook 已提交
88
#endif
89 90
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
91
  std::vector<std::vector<std::vector<FeatureKey>>> device_dim_keys_;
92
  std::vector<std::mutex*> mutex_;
93 94
  std::vector<std::vector<std::mutex*>> dim_mutex_;
  int multi_mf_dim_ = 0;
95

L
lxsbupt 已提交
96
  void* sub_graph_feas = NULL;
Y
yaoxuefeng 已提交
97
  uint32_t shard_num_ = 37;
L
lxsbupt 已提交
98
  uint16_t pass_id_ = 0;
T
Thunderbrook 已提交
99 100 101 102 103 104 105
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
106 107
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
108

109 110 111 112 113 114
  void init(int shard_num, int device_num, int dim_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    feature_dim_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);
    value_dim_ptr_.resize(shard_num_);
T
Thunderbrook 已提交
115 116 117 118 119 120
    device_task_ptr_.resize(shard_num_);
    device_task_keys_.resize(shard_num_);
    for (size_t i = 0; i < device_task_ptr_.size(); i++) {
      device_task_ptr_[i].resize(device_num);
      device_task_keys_[i].resize(device_num);
    }
121 122 123
    for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
      feature_dim_keys_[i].resize(dim_num);
      value_dim_ptr_[i].resize(dim_num);
124
    }
125 126 127 128 129 130 131 132 133
    device_values_.resize(device_num);
    device_keys_.resize(device_num);

    device_dim_keys_.resize(device_num);
    device_dim_ptr_.resize(device_num);
    mutex_.resize(device_num);
    dim_mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
134
    }
135 136 137 138 139
    for (size_t i = 0; i < dim_mutex_.size(); ++i) {
      dim_mutex_[i].resize(dim_num);
      for (int j = 0; j < dim_num; j++) {
        dim_mutex_[i][j] = new std::mutex();
      }
140
    }
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    multi_mf_dim_ = dim_num;
  }

  void Reset() {
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < feature_keys_.size(); ++i) {
        feature_keys_[i].clear();
      }
      for (size_t i = 0; i < value_ptr_.size(); ++i) {
        value_ptr_[i].clear();
      }
      for (size_t i = 0; i < device_values_.size(); ++i) {
        device_values_[i].clear();
      }
      for (size_t i = 0; i < device_keys_.size(); ++i) {
        device_keys_[i].clear();
      }
T
Thunderbrook 已提交
158 159 160 161 162 163
      for (size_t i = 0; i < device_task_ptr_.size(); ++i) {
        for (size_t j = 0; j < device_task_ptr_[i].size(); ++j) {
          device_task_ptr_[i][j].clear();
          device_task_keys_[i][j].clear();
        }
      }
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    } else {
      VLOG(3) << "Reset gpu task with dynamic mf dimention";
      for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
        for (size_t j = 0; j < feature_dim_keys_[i].size(); j++) {
          feature_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < value_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < value_dim_ptr_[i].size(); j++) {
          value_dim_ptr_[i][j].clear();
        }
      }

      for (size_t i = 0; i < device_dim_keys_.size(); i++) {
        for (size_t j = 0; j < device_dim_keys_[i].size(); j++) {
          device_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < device_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < device_dim_ptr_[i].size(); j++) {
          device_dim_ptr_[i][j].clear();
        }
      }
187 188
    }
  }
189 190
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
191 192 193 194 195 196
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
197 198
      std::copy(thread_keys[i].begin(),
                thread_keys[i].end(),
199
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
200 201
    }
  }
202

203
  void batch_add_keys(int shard_num,
204
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
205 206 207
    int idx = feature_keys_[shard_num].size();
    feature_keys_[shard_num].resize(feature_keys_[shard_num].size() +
                                    shard_keys.size());
208 209
    std::copy(shard_keys.begin(),
              shard_keys.end(),
210 211 212
              feature_keys_[shard_num].begin() + idx);
  }

213 214
  void batch_add_keys(int shard_num,
                      int dim_id,
215 216 217 218
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
    int idx = feature_dim_keys_[shard_num][dim_id].size();
    feature_dim_keys_[shard_num][dim_id].resize(
        feature_dim_keys_[shard_num][dim_id].size() + shard_keys.size());
219 220
    std::copy(shard_keys.begin(),
              shard_keys.end(),
221 222 223
              feature_dim_keys_[shard_num][dim_id].begin() + idx);
  }

Y
yaoxuefeng 已提交
224 225 226 227 228 229 230 231 232
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    auto unique_dynamic_mf_func = [this](int i, int j) {
      auto& cur_keys = feature_dim_keys_[i][j];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    if (!multi_mf_dim_) {
      for (uint32_t i = 0; i < shard_num_; i++) {
        threads.push_back(std::thread(unique_func, i));
      }
    } else {
      for (uint32_t i = 0; i < shard_num_; i++) {
        for (int j = 0; j < multi_mf_dim_; j++) {
          threads.push_back(std::thread(unique_dynamic_mf_func, i, j));
        }
      }
      VLOG(3) << "heter_context unique keys with dynamic mf dimention";
Y
yaoxuefeng 已提交
251 252 253 254 255
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
256 257 258 259 260
};

}  // end namespace framework
}  // end namespace paddle
#endif