common.py 92.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18
from paddle.fluid.layers.tensor import fill_constant
19 20 21
from paddle.framework import core, in_dynamic_mode
from paddle.static import Variable, default_main_program
from paddle.tensor.creation import full
22 23 24 25

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
26
    check_variable_and_dtype,
27
)
28
from ...fluid.framework import in_dygraph_mode
29 30
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
31

32 33
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
34

35 36
__all__ = []

X
xiaoting 已提交
37

38 39 40
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

41
    Return a col buffer of sliding local blocks of input x, also known
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
69
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
70 71
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
72
        paddings(int|list, optional):       The paddings of each dimension, should be
73 74 75 76 77 78
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
79
        dilations(int|list, optional):      the dilations of convolution kernel, should be
80 81 82 83 84 85 86 87
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
88
        Tensor, The tensor corresponding to the sliding local blocks.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

109
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
110 111 112 113

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
114 115 116
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
117 118 119 120

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
121 122 123
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
124 125 126 127

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
128 129 130
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
146 147
            "of 2 or 4 integers"
        )
148 149

    if in_dygraph_mode():
150
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
151 152

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
153 154 155 156 157 158 159 160 161 162 163
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
164 165 166
    return out


167 168 169 170 171 172 173 174 175 176
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
177
    """
S
swtkiwi 已提交
178

179
    This API resizes a batch of images.
180

181 182
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
183
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
184 185
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
186
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
187

X
xiaoting 已提交
188
    Supporting resample methods:
189 190 191 192 193 194 195

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
196

197 198 199
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
214
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
215 216 217 218 219 220 221
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

222 223
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
224 225
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
226 227
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
228 229 230 231
    Example:

    .. code-block:: text

232
        # For scale_factor:
X
xiaoting 已提交
233 234 235 236 237
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

238
        # Linear interpolation:
239 240 241 242 243 244 245 246 247
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
248

249
        # Nearest neighbor interpolation:
X
xiaoting 已提交
250

X
xiaoting 已提交
251 252 253 254 255
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
256

257
        # Bilinear interpolation:
X
xiaoting 已提交
258 259 260 261 262 263 264 265 266 267 268 269
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

270
        # Bicubic interpolation:
X
xiaoting 已提交
271 272 273 274 275 276 277 278 279 280 281 282
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

283
        # Trilinear interpolation:
X
xiaoting 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

298 299
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
300

X
xiaoting 已提交
301 302
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
303

X
xiaoting 已提交
304 305
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
306

X
xiaoting 已提交
307 308
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
309

X
xiaoting 已提交
310 311
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
312

X
xiaoting 已提交
313
    Parameters:
X
xiaoting 已提交
314
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
315
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
316
        size (list|tuple|Tensor|None): Output shape of image resize
317 318
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
319
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
320
             If a Tensor, its dimensions size should be a 1.
321 322 323
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
324
             Default: None.
325
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
326
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
327 328
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
329
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
330 331 332 333
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
334
        data_format (str, optional): Specify the data format of the input, and the data format of the output
335
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
336 337 338
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
339 340 341
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
342
    Returns:
343
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
344 345
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
346

347

X
xiaoting 已提交
348 349 350
    Examples:
        .. code-block:: python

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
368
    """
369 370 371 372 373 374 375 376 377 378
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
379
        'AREA',
380
    ]
X
xiaoting 已提交
381 382
    if resample not in resample_methods:
        raise ValueError(
383
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
384 385
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
386

X
xiaoting 已提交
387
    if resample in ['LINEAR'] and len(x.shape) != 3:
388
        raise ValueError("'linear' only support 3-D tensor.")
389

390 391 392 393 394
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
395
    if resample == 'TRILINEAR' and len(x.shape) != 5:
396 397 398 399
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
400 401 402

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
403

X
xiaoting 已提交
404 405
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
406 407 408 409
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
410

X
xiaoting 已提交
411
    if resample == 'AREA':
412 413 414 415 416
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
417 418 419 420 421 422 423 424
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
425

X
xiaoting 已提交
426
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
427
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
428
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
429
        raise ValueError(
430 431 432 433
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
434
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
435
        raise ValueError(
436 437 438 439
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
440
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
441
        raise ValueError(
442 443 444 445
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
446 447

    def _is_list_or_turple_(data):
448
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
449

450
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
451
        data_layout = 'NCHW'
452
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
453 454
        data_layout = 'NHWC'

X
xiaoting 已提交
455 456 457 458
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
459 460 461 462 463 464 465
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
466
        "data_layout": data_layout,
X
xiaoting 已提交
467 468
    }

469 470
    out_shape = size
    scale = scale_factor
471 472
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
473
    if out_shape is not None:
Z
zhiboniu 已提交
474
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
475 476 477
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
478
            if in_dynamic_mode():
479 480
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
481 482
                else:
                    out_shape = list(out_shape)
483 484 485
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
486
            if not (_is_list_or_turple_(out_shape)):
487
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
488 489 490 491 492 493
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
494 495 496
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
497 498 499 500 501 502 503 504 505 506

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
507
                        assert isinstance(dim, int)
X
xiaoting 已提交
508
                        temp_out = helper.create_variable_for_type_inference(
509 510 511 512 513
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
514 515 516 517
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
518
            if len(x.shape) == 3:
519 520
                if len(out_shape) != 1:
                    raise ValueError(
521 522
                        "size length should be 2 for input 3-D tensor"
                    )
523 524 525 526 527
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
528
            if len(x.shape) == 4:
X
xiaoting 已提交
529
                if len(out_shape) != 2:
530 531 532
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
533 534 535 536 537 538 539
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
540
            if len(x.shape) == 5:
X
xiaoting 已提交
541
                if len(out_shape) != 3:
542 543 544
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
545 546 547 548 549 550 551 552 553 554 555
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
556
        if in_dynamic_mode() and isinstance(scale, Variable):
557
            scale = list(scale.numpy())
X
xiaoting 已提交
558 559 560 561 562 563
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
564 565 566 567
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
568
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
569
            if len(scale) != len(x.shape) - 2:
570 571 572 573
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
574 575 576 577
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
578 579
        else:
            raise TypeError(
580 581
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
582

Z
zhiboniu 已提交
583
    if in_dynamic_mode():
X
xiaoting 已提交
584 585 586 587 588 589 590
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
591
            if in_dygraph_mode():
592
                out = _C_ops.linear_interp(
593 594
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
595 596
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
597 598 599 600 601 602 603 604 605
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
606
            else:
607
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
608
        elif resample_type == "bilinear":
609
            if in_dygraph_mode():
610
                out = _C_ops.bilinear_interp(
611 612
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
613 614
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
615 616 617 618 619 620 621 622 623
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
624
            else:
625
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
626
        elif resample_type == "trilinear":
627
            if in_dygraph_mode():
628
                out = _C_ops.trilinear_interp(
629 630
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
631 632
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
633 634 635 636 637 638 639 640 641
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
642
            else:
643
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
644
        elif resample_type == "nearest":
645
            if in_dygraph_mode():
646
                out = _C_ops.nearest_interp(
647 648
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
649 650
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
651 652 653 654 655 656 657 658 659
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
660
            else:
661
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
662
        elif resample_type == "bicubic":
663
            if in_dygraph_mode():
664
                out = _C_ops.bicubic_interp(
665 666
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
667 668
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
669 670 671 672 673 674 675 676 677
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
678
            else:
679
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
680
        return out
X
xiaoting 已提交
681
    out = helper.create_variable_for_type_inference(dtype)
682 683 684 685 686 687
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
688
    return out
L
littletomatodonkey 已提交
689 690


691 692 693 694 695 696 697 698 699 700
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
701
    """
702

703
    This API resizes a batch of images.
704

X
xiaoting 已提交
705 706 707
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
708 709
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
710 711 712
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
713 714 715 716 717 718
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

719 720 721
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
722 723 724 725 726 727 728 729
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
730

X
xiaoting 已提交
731 732 733 734
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
735

X
xiaoting 已提交
736 737 738
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
739

X
xiaoting 已提交
740 741 742
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
743 744 745 746 747 748 749

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
750
    Example:
751
        .. code-block:: text
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
775
            else:
776 777 778 779 780 781 782
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
783 784
            if:
                align_corners = False , align_mode = 0
785 786 787
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
788 789
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
819
                W_out = W_{in} * scale_{factor}
820

X
xiaoting 已提交
821
    For details of linear interpolation, please refer to Wikipedia:
822
    https://en.wikipedia.org/wiki/Linear_interpolation.
823

X
xiaoting 已提交
824 825
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
826

X
xiaoting 已提交
827 828
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
829

X
xiaoting 已提交
830 831
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
832

X
xiaoting 已提交
833 834
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
835

X
xiaoting 已提交
836 837 838
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
839
        size (list|tuple|Tensor|None, optional): Output shape of image resize
840 841
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
842
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
843
             If a Tensor , its dimensions size should be a 1.
844
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
845
             least one of :attr:`size` or :attr:`scale_factor` must be set.
846
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
847
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
848
             Default: None.
849
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
850
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
851
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
852 853 854
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
855
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
856 857 858 859 860 861 862 863 864 865
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
866

X
xiaoting 已提交
867 868 869 870
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
871

872 873
    Examples:
        .. code-block:: python
874

875 876
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
877

878 879
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
880

881 882 883
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
884 885

    """
886 887 888
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
889 890


891 892 893 894
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
895
    See :ref:`api_nn_Bilinear` for details and output shape.
896 897

    Parameters:
898 899 900 901 902 903
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
904 905

    Returns:
906
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
907 908

    Examples:
909
        .. code-block:: python
910

911 912
            import paddle
            import paddle.nn.functional as F
913

914 915 916 917
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
918

919 920 921
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
922 923
    """

924
    if in_dygraph_mode():
W
wanghuancoder 已提交
925
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
926 927 928
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
929

930 931 932
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
933

934 935
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
936

937 938 939
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
940

941
        return out
942 943


944 945 946
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
947
    r"""
948 949 950 951 952 953 954
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
955 956 957
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
958
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
959

960
            1. upscale_in_train (default), upscale the output at training time
961

962 963
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
964

965
            2. downscale_in_infer, downscale the output at inference
966

967 968
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
969

970
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
971 972 973 974

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

975

976 977
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
978

979
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
980 981 982

        ..  code-block:: text

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1008 1009


1010
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1011 1012 1013

        ..  code-block:: text

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1042
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1053

1054 1055
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1056 1057

        .. code-block:: python
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1091 1092

    """
1093 1094 1095 1096 1097
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1098 1099
        if p == 0:
            return x
1100 1101
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1102 1103
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1104 1105
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1106
    if axis and not isinstance(axis, (int, list, tuple)):
1107 1108
        raise TypeError("datatype of axis argument should be int or list")

1109
    if axis is None:  # commonly used dropout
1110
        seed = None
1111 1112 1113
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1114

1115
        if in_dygraph_mode():
1116 1117
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1118

1119
            out, mask = _C_ops.dropout(
1120
                x,
1121
                None,
1122 1123 1124
                p,
                not training,
                mode,
1125 1126
                seed if seed is not None else 0,
                seed is not None,
1127
            )
1128

1129 1130 1131 1132 1133 1134
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1135

1136 1137 1138 1139
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1140

1141 1142 1143
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1144

1145 1146 1147 1148 1149 1150 1151
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1152
                    )
1153 1154 1155 1156 1157 1158 1159 1160
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1161

1162
            attrs = get_attrs(helper.main_program, p, not training, seed)
1163

1164 1165 1166 1167 1168 1169 1170
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1171
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1172
        if not in_dynamic_mode():
1173 1174 1175 1176
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1177 1178
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1179

1180 1181 1182 1183 1184
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1185

1186
            # get mask shape
1187
            input_shape = x.shape
Z
zhiboniu 已提交
1188
            if not in_dynamic_mode():
1189
                input_shape_tensor = paddle.shape(x)
1190
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1191
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1192 1193 1194 1195 1196
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1197 1198
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1199 1200 1201 1202
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1203
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1204
            if not in_dynamic_mode():
1205 1206 1207 1208 1209
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1210

1211 1212 1213 1214
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1215
            p = full(shape=[1], fill_value=p, dtype='float32')
1216
            keep_mask = paddle.greater_equal(random_tensor, p)
1217

1218 1219
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1220 1221 1222
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1223 1224 1225 1226 1227
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1228 1229 1230 1231 1232 1233 1234 1235 1236
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1237
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1238 1239 1240 1241

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
1242 1243 1244 1245
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1246 1247 1248 1249

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1250

1251 1252
    Examples:
        .. code-block:: python
1253

1254 1255
            import paddle

1256
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1257 1258 1259 1260
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1261 1262 1263 1264
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1265 1266 1267
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1268 1269 1270 1271 1272
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1273 1274 1275 1276

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1277 1278
            "Attr(data_format): %s." % str(data_format)
        )
1279

1280 1281 1282 1283 1284 1285 1286 1287
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1288 1289 1290 1291 1292 1293 1294 1295


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1296
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1297 1298 1299 1300

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1301 1302 1303 1304
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1305 1306 1307 1308

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1309

1310 1311
    Examples:
        .. code-block:: python
1312

1313
            import paddle
1314

1315 1316 1317 1318 1319 1320
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1321 1322 1323 1324 1325

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1326 1327 1328 1329 1330
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1331 1332 1333 1334

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1335 1336
            "Attr(data_format): %s." % str(data_format)
        )
1337

1338 1339 1340 1341 1342 1343 1344 1345
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1346 1347


1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1380 1381 1382 1383 1384 1385
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1386
    if not in_dynamic_mode():
1387 1388 1389
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1390 1391

    if training:
1392
        if p == 1:
1393 1394
            return paddle.scale(x, scale=0.0)
        # get transformation params
1395 1396 1397
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1398
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1399 1400 1401 1402 1403
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1404 1405 1406 1407
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1408
        p = full(shape=[1], fill_value=p, dtype='float32')
1409 1410 1411
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1412 1413
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1414

1415
        # apply mask
Z
zhiboniu 已提交
1416
        b = full(shape=[1], fill_value=b, dtype=dtype)
1417 1418 1419 1420
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1421
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1422 1423 1424 1425 1426
        return res
    else:  # test
        return x


1427
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1428
    """
1429 1430
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1431
    then the padding will be started from the first dimension and moved back onto x
1432 1433
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1434 1435 1436 1437
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1438
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1439
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1440 1441
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1442 1443
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1444
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1445
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1446 1447 1448 1449 1450 1451

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1452 1453 1454 1455
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1456 1457

    Returns:
1458
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1459

1460
    Example:
1461

L
littletomatodonkey 已提交
1462 1463 1464 1465 1466 1467
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1468 1469 1470 1471 1472 1473 1474 1475 1476
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1477 1478 1479 1480 1481 1482 1483 1484
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1485
            Case 2:
L
littletomatodonkey 已提交
1486 1487 1488 1489 1490 1491 1492
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1493
            Case 3:
L
littletomatodonkey 已提交
1494 1495 1496 1497 1498 1499 1500
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1501
            Case 4:
L
littletomatodonkey 已提交
1502 1503 1504 1505 1506 1507 1508
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1509
    Examples:
L
littletomatodonkey 已提交
1510
        .. code-block:: python
L
littletomatodonkey 已提交
1511

L
littletomatodonkey 已提交
1512 1513
            import paddle
            import paddle.nn.functional as F
1514

L
littletomatodonkey 已提交
1515 1516
            # example 1
            x_shape = (1, 1, 3)
1517
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1518
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1519
            print(y)
L
littletomatodonkey 已提交
1520
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1521

L
littletomatodonkey 已提交
1522
            # example 2
1523
            x_shape = (1, 1, 3)
1524
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1525 1526 1527
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1528

1529
            # example 3
L
littletomatodonkey 已提交
1530
            x_shape = (1, 1, 2, 3)
1531
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1532 1533
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1534 1535 1536 1537 1538
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1539 1540 1541 1542 1543 1544 1545 1546
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1547 1548

    data_format = data_format.upper()
1549 1550
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1551
        "but got {}".format(data_format)
1552
    )
L
littletomatodonkey 已提交
1553 1554 1555

    x_dim = len(x.shape)

1556 1557 1558 1559 1560
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1561 1562
        paddings = pad
        pad_value = value
1563 1564

        if in_dygraph_mode():
1565
            out = _C_ops.pad(x, paddings, float(pad_value))
1566 1567
            return out

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1582

1583 1584 1585 1586
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1587 1588 1589
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1590 1591 1592 1593 1594 1595
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1596
        return out
L
littletomatodonkey 已提交
1597

1598
    assert x_dim in [
1599 1600 1601
        3,
        4,
        5,
1602 1603 1604 1605 1606 1607 1608
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1609 1610 1611 1612 1613
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1614

L
littletomatodonkey 已提交
1615 1616 1617 1618 1619 1620
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1621
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1622
                unsqueezed_dim = [3, 4]
1623
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1624
            elif x_dim == 4:
1625
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1626
                unsqueezed_dim = [2]
1627
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1628 1629 1630
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1631
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1632
                unsqueezed_dim = [2, 3]
1633
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1634
            elif x_dim == 4:
1635
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1636
                unsqueezed_dim = [1]
1637
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1638
    else:
1639
        pad = list(pad)
L
littletomatodonkey 已提交
1640 1641 1642 1643 1644
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1645
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1646 1647 1648
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1649
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1650 1651 1652 1653 1654
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1655
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1656 1657 1658
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1659
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1660

J
Jiabin Yang 已提交
1661
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1662
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1663
            pad = pad.numpy().tolist()
1664
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1665
    else:
1666 1667 1668 1669 1670
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1671
        else:
1672
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1673

1674
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1675

1676 1677 1678 1679 1680
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1681 1682

    if len(unsqueezed_dim) != 0:
1683
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1684 1685 1686 1687

    return out


1688 1689 1690 1691 1692 1693 1694 1695 1696
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1697
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1698 1699 1700 1701
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1702
    Returns:
1703
        Tensor, padded with 0 according to pad and data type is same as input.
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1721 1722 1723 1724 1725 1726 1727 1728
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1729 1730


Y
Yang Zhang 已提交
1731
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1732
    """
Y
Yang Zhang 已提交
1733
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1734 1735 1736 1737

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1738 1739
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1740 1741

    Returns:
1742
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1743 1744 1745

    Examples:
        .. code-block:: text
1746

L
littletomatodonkey 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1756
                axis = 1
L
littletomatodonkey 已提交
1757 1758 1759 1760 1761
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1762

L
littletomatodonkey 已提交
1763 1764 1765
            import paddle
            import paddle.nn as nn

1766 1767 1768 1769
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1770
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1771
            print(result)
1772
            # [0.97689527,  0.99996042, -0.55138415]
1773

L
littletomatodonkey 已提交
1774
    """
1775 1776 1777
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1778
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1779 1780
    cos_sim = w12 / n12
    return cos_sim
1781 1782 1783


def linear(x, weight, bias=None, name=None):
1784
    r"""
1785

1786 1787
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1788 1789 1790

    .. math::

1791
        Out = XW + b
1792

1793
    where :math:`W` is the weight and :math:`b` is the bias.
1794

1795 1796 1797 1798
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1799
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1800 1801
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1802

1803 1804 1805 1806 1807 1808 1809
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1810 1811

    Returns:
1812 1813
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1814 1815 1816

    Examples:
        .. code-block:: python
1817

1818
          import paddle
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1833
    """
J
Jiabin Yang 已提交
1834
    if in_dygraph_mode():
1835
        # TODO(jiabin): using addmm for fast forward route
1836
        return _C_ops.linear(x, weight, bias)
1837
    else:
1838 1839
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1840

1841 1842 1843 1844
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')
J
Jiabin Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1857
            helper.append_op(
1858 1859 1860 1861
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1},
1862
            )
1863 1864 1865
        else:
            res = tmp
        return res
1866 1867 1868


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1869
    r"""
1870
    Label smoothing is a mechanism to regularize the classifier layer and is called
1871 1872 1873 1874
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1875

1876
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1914 1915 1916 1917

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1918
            output = paddle.nn.functional.label_smooth(x)
1919
            print(output)
1920 1921 1922
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1923
    """
1924
    if epsilon > 1.0 or epsilon < 0.0:
1925 1926
        raise ValueError("The value of epsilon must be between 0 and 1.")

1927
    if in_dygraph_mode():
1928
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1929

1930
    elif paddle.in_dynamic_mode():
1931 1932 1933
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1934

1935 1936 1937
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1938 1939 1940 1941

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1942 1943 1944 1945 1946 1947 1948 1949
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1950
    return smooth_label
1951 1952


G
Guoxia Wang 已提交
1953
def class_center_sample(label, num_classes, num_samples, group=None):
1954 1955
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1956
    The process of sampling subset class centers is straightforward:
1957 1958 1959 1960

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1961
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1962 1963 1964 1965
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1966

1967
    .. hint::
1968
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1969
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1970

1971 1972
        The API supports CPU, single GPU and multi GPU.

1973 1974 1975 1976
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1977
    Args:
G
Guoxia Wang 已提交
1978 1979
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1980
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1981
        num_samples (int): A positive integer to specify the number of class center to sample.
1982
        group (Group, optional): The group instance return by paddle.distributed.new_group
1983 1984
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1985 1986 1987 1988 1989 1990 1991 1992

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1993
        :name: code-example1
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2016
        :name: code-example2
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2048

2049 2050 2051 2052 2053 2054 2055 2056
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2057
    if not (group is False or group is None or hasattr(group, 'is_member')):
2058 2059
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2060 2061 2062 2063
             (got group: {})'.format(
                group
            )
        )
2064 2065 2066
        return

    if hasattr(group, 'is_member') and not group.is_member():
2067 2068
        return

2069
    ring_id = 0
2070 2071
    rank = 0
    nranks = 1
2072
    if group is not False:
2073 2074 2075
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2076 2077 2078 2079 2080
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2081
            nranks = parallel_env.world_size if group is None else group.nranks
2082 2083 2084

    if num_samples > num_classes:
        raise ValueError(
2085 2086 2087 2088
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2089

G
Guoxia Wang 已提交
2090 2091 2092
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2093
    if label_size != -1 and label_size < 1:
2094 2095 2096 2097 2098 2099
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2100 2101 2102

    label_dims = len(list(label.shape))
    if label_dims != 1:
2103 2104 2105 2106 2107 2108
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2109 2110

    seed = None
2111 2112 2113
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2114
    if in_dygraph_mode():
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2125
    elif paddle.in_dynamic_mode():
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2146 2147
        return remapped_label, sampled_class_center

2148 2149 2150
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2151 2152 2153
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2154 2155
        dtype=label.dtype
    )
2156
    sampled_class_center = helper.create_variable_for_type_inference(
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2176
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2177 2178


2179 2180 2181
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2182
    r"""
2183

2184
    Combines an array of sliding local blocks into a large containing
2185 2186
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2187 2188 2189 2190 2191 2192


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2193

2194 2195 2196
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2197 2198 2199 2200

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2201
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2202
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2203
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2204
                                  or an integer k treated as [k, k].
2205
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2206 2207
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2208
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2209 2210 2211 2212 2213 2214
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2215
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2234 2235 2236
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2237 2238 2239 2240 2241 2242 2243

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2244
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2245

X
xiaoting 已提交
2246
    def _is_list_or_turple_(data):
2247
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2248

X
xiaoting 已提交
2249 2250 2251
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2252 2253 2254
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2255 2256 2257 2258

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2259 2260 2261
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2262 2263 2264 2265

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2266 2267 2268
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2269 2270 2271 2272

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2273 2274 2275
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2291 2292
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2293

X
xiaoting 已提交
2294
    if in_dygraph_mode():
2295 2296 2297
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2298
    elif in_dynamic_mode():
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2312 2313
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2326
    return out