parallel_executor.cc 26.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
30
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
49

Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
61
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

79
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
80 81 82 83 84 85 86 87 88 89 90 91

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
114 115
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
      }

      flat_nccl_ids.push_back(nccl_id);

135 136
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
137 138 139 140 141 142
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
143 144
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
145 146 147 148 149 150 151 152 153 154 155
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

156 157
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
158 159

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
160 161 162 163 164 165 166 167
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
168 169 170 171 172 173 174 175 176

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
177

178 179 180 181
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
182 183
    }
  }
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

  void InitOrGetNCCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
    InitNCCLCtxs(scope, bst);
  }
202 203
#endif

D
dzhwinter 已提交
204
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
205 206
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
207
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
208
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
209

P
peizhilin 已提交
210
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
211
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
212
#endif
C
chengduoZH 已提交
213 214
  bool own_local_scope_;
  bool use_cuda_;
215
  bool use_all_reduce_;
216
  size_t nranks_;
S
sneaxiy 已提交
217

S
sneaxiy 已提交
218 219 220
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
221 222 223
  std::vector<ir::ReferenceCountMap> global_ref_cnts_;
  std::vector<ir::AtomicReferenceCountMap> runtime_ref_cnts_;
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
224 225
};

226 227
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
228 229 230 231 232
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
233
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
234
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
235 236
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
237 238
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
239
      } else {
S
sneaxiy 已提交
240 241
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
242 243
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
244
    } else {
S
sneaxiy 已提交
245
#endif
S
sneaxiy 已提交
246 247 248 249 250 251 252
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
253 254 255 256
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
257
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
258 259
  }

S
sneaxiy 已提交
260
  if (!gcs_.empty()) {
261
    std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;
S
sneaxiy 已提交
262 263 264

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
265 266
    ref_cnt_pass->SetNotOwned(ir::kGlobalReferenceCount, &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
267
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
268 269 270 271
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
272
    eager_deletion_pass->SetNotOwned(ir::kRuntimeReferenceCount,
S
sneaxiy 已提交
273
                                     &runtime_ref_cnts_);
274 275
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
276
                                     &last_live_ops_of_vars);
277
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
278
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
279 280 281 282 283
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

284 285 286 287
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
302 303 304 305 306 307 308 309
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
310
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
311
  member_->global_scope_ = scope;
312
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
313
  member_->build_strategy_ = build_strategy;
314 315
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
316
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
317 318 319 320 321
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
322
  if (!member_->use_all_reduce_) {
323 324 325 326 327
    if (places.size() == 1) {
      LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places should be greater than 1.";
      member_->use_all_reduce_ = true;
    }
Y
Yancey1989 已提交
328 329
  }

330
  LOG(INFO) << string::Sprintf(
331 332 333 334 335
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

336
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
337
  // Create local scopes
338
  if (local_scopes.empty()) {
C
chengduoZH 已提交
339
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
340 341
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
342
      member_->local_scopes_.emplace_back(&scope->NewScope());
343 344
    }
  } else {
C
chengduoZH 已提交
345
    member_->own_local_scope_ = false;
346 347
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
348
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
349
    }
Y
Yu Yang 已提交
350 351
  }

Q
Qiao Longfei 已提交
352
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
353 354 355
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
356
    graphs.push_back(graph);
D
dongdaxiang 已提交
357
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
358 359 360 361
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
362
  }
Q
Qiao Longfei 已提交
363

Y
Yancey1989 已提交
364 365 366
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
367 368
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
369 370 371 372 373
  if (build_strategy.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
374

375
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
376
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
377
    member_->InitOrGetNCCLCommunicator(scope, build_strategy);
Q
qingqing01 已提交
378

W
Wu Yi 已提交
379 380 381
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
382
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
383 384 385
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
386 387
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
Q
qingqing01 已提交
388 389 390 391 392
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
393
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
394
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
395
    }
Y
Yu Yang 已提交
396
#endif
C
chengduoZH 已提交
397
  }
Y
Yan Xu 已提交
398 399 400 401 402 403 404 405 406 407 408 409
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
410
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
411 412
  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
413
  }
414

Q
Qiao Longfei 已提交
415
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
416

Q
Qiao Longfei 已提交
417 418 419
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
420
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
421
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
422
    VLOG(3) << "use local async mode";
423 424
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
425
                                 member_->use_cuda_, member_->nccl_ctxs_);
D
dongdaxiang 已提交
426
    for (size_t i = 1; i < member_->places_.size(); ++i) {
427 428 429
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
430
                               member_->use_cuda_, member_->nccl_ctxs_);
431
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
432
    }
Q
Qiao Longfei 已提交
433
  } else {
434 435
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
436
                                 member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
437
  }
C
chengduoZH 已提交
438
#else
Q
Qiao Longfei 已提交
439
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
440
    VLOG(3) << "use local async mode";
441 442 443
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
444
    for (size_t i = 1; i < member_->places_.size(); ++i) {
445 446
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
447
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
448
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
449
    }
Q
can run  
Qiao Longfei 已提交
450
  } else {
451 452 453
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
454
  }
Y
Yu Yang 已提交
455
#endif
456

Y
Yancey1989 已提交
457
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
458 459
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
460
  if (max_memory_size >= 0) {
461 462
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
463 464
  }

Q
Qiao Longfei 已提交
465 466
  async_graphs[0] = graph;

467 468
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
469
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
470 471 472 473 474 475
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
476 477
    }
  }
Y
Yancey1989 已提交
478

W
Wu Yi 已提交
479 480
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
481
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
482 483 484 485
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
486
          << ir::GraphNum(*graph)
C
chengduo 已提交
487 488 489 490 491
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
492 493
  }

Q
Qiao Longfei 已提交
494
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
495 496
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
497
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
498 499
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
500
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
501 502
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
503
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
504
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
505 506 507 508
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
509
  } else {
Y
Yancey1989 已提交
510
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
511
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
512
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
513
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
514
    } else {
Q
can run  
Qiao Longfei 已提交
515
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
516
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
517
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
518
    }
C
chengduoZH 已提交
519
  }
Y
yuyang18 已提交
520

Q
can run  
Qiao Longfei 已提交
521
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
522 523 524 525 526
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
527 528
}

Y
Yancey1989 已提交
529
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
530
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
531
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
532
  // the initializing bcast, all vars would be bcast from device(0).
533
  for (auto &var : vars) {
X
Xin Pan 已提交
534
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
535
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
536 537 538 539
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
540
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
541
      VLOG(3) << "one in var not inited, return!";
542 543
      continue;
    }
544 545
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
546
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
547
      std::vector<void *> buffers;
C
chengduo 已提交
548
      buffers.reserve(member_->places_.size());
549 550 551 552 553
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
554

Y
Yan Xu 已提交
555
        if (i == 0 && trainer_id == 0) {
556 557
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
558
          auto local_scope = member_->local_scopes_[i];
559
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
560
          t->Resize(dims);
561
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
562
        }
563
        buffers.push_back(buffer);
564
      }
565

566 567 568
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
569
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
570 571
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
572
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
573 574
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
575
        }
576
        nccl_ctxs->WaitAll();
577
      }
C
chengduoZH 已提交
578
#endif
579 580
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
581
      for (size_t i = 1; i < member_->places_.size(); ++i) {
582 583
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
584

Q
Qiao Longfei 已提交
585
        auto copy_memory = [&] {
586 587 588
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
589 590
        };

Q
Qiao Longfei 已提交
591
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
592 593 594 595 596 597 598

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
599
        } else {
Q
can run  
Qiao Longfei 已提交
600
          share_memory();
601
        }
Y
Yu Yang 已提交
602
      }
Y
Stash  
Yu Yang 已提交
603 604
    }
  }
Y
Yu Yang 已提交
605
}
Y
Yu Yang 已提交
606

Y
Yu Yang 已提交
607 608
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
609
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
610 611 612
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
613 614
  }
#endif
Y
Yu Yang 已提交
615

X
Xin Pan 已提交
616
  platform::RecordBlock b(0);
S
sneaxiy 已提交
617
  if (member_->HasGarbageCollectors()) {
618
    platform::RecordEvent event("PrepareGarbageCollectors");
S
sneaxiy 已提交
619
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
620
  }
621 622

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
623 624 625
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
626
}
Y
Yu Yang 已提交
627

Y
Yu Yang 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
647 648 649 650 651 652
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
653
          lod_tensors.size(), lod_tensors.size(),
C
chengduo 已提交
654 655 656 657 658 659 660 661
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
X
Xin Pan 已提交
662 663
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
664
      auto t =
Y
Yu Yang 已提交
665
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
666 667
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
668 669 670 671
    }
  }
}

X
Xin Pan 已提交
672 673 674 675 676 677 678
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

679
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
680
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
681
    const BuildStrategy &build_strategy) const {
682 683 684
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
685

Y
Yancey1989 已提交
686
  bool enable_parallel_graph = true;
687

X
Xin Pan 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
701 702 703
    }
  }

704
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
705
    if (build_strategy.enable_sequential_execution_ ||
706
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
707
      enable_parallel_graph = false;
708 709 710 711 712 713 714 715 716
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
717
  return enable_parallel_graph;
718 719
}

Y
Yu Yang 已提交
720
}  // namespace framework
Y
Yang Yang 已提交
721
}  // namespace paddle
S
sneaxiy 已提交
722

S
sneaxiy 已提交
723
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
724
USE_PASS(eager_deletion_pass);