test_weight_decay.py 6.7 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import contextlib

import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid.core as core

import paddle.fluid as fluid
25
from paddle.fluid import compiler
C
chengduo 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def get_places():
    places = []
    if core.is_compiled_with_cuda():
        places.append(core.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
57 58 59
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
C
chengduo 已提交
60 61 62 63 64 65
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
66
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
67 68 69 70 71

    return avg_cost


class TestWeightDecay(unittest.TestCase):
72

C
chengduo 已提交
73 74
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
75 76
        reader = paddle.batch(paddle.dataset.imdb.train(self.word_dict),
                              batch_size=4)()
C
chengduo 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        self.train_data = [next(reader) for _ in range(5)]
        self.learning_rate = .5

    def run_executor(self, place, feed_list, loss):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())
        main_prog = fluid.default_main_program()
        loss_set = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=[loss.name])

            print("loss              %s" % (np.average(out)))
            loss_set.append(np.average(out))

        return loss_set

    def run_parallel_exe(self,
                         place,
                         feed_list,
                         loss,
                         use_reduce=False,
                         use_fast_executor=False,
                         use_ir_memory_optimize=False):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        exec_strategy = fluid.ExecutionStrategy()
        if use_fast_executor:
            exec_strategy.use_experimental_executor = True

        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \
                if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
        build_strategy.memory_optimize = use_ir_memory_optimize

116 117 118 119 120
        train_cp = compiler.CompiledProgram(
            fluid.default_main_program()).with_data_parallel(
                loss_name=loss.name,
                exec_strategy=exec_strategy,
                build_strategy=build_strategy)
C
chengduo 已提交
121 122 123

        loss_set = []
        for data in self.train_data:
124 125 126
            out = exe.run(train_cp,
                          feed=feeder.feed(data),
                          fetch_list=[loss.name])
C
chengduo 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
            loss_set.append(np.average(out))

        return loss_set

    def check_weight_decay(self,
                           place,
                           model,
                           use_parallel_exe=False,
                           use_reduce=False):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        startup_prog.random_seed = 1
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
140 141 142 143
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
144 145 146 147 148 149 150 151 152 153 154
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            avg_cost = model(data, label, len(self.word_dict))

            param_list = [(var, var * self.learning_rate)
                          for var in main_prog.block(0).all_parameters()]

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=self.learning_rate)
            optimizer.minimize(avg_cost)

            for params in param_list:
155 156
                updated_p = fluid.layers.elementwise_sub(x=params[0],
                                                         y=params[1])
C
chengduo 已提交
157 158 159
                fluid.layers.assign(input=updated_p, output=params[0])

            if use_parallel_exe:
160 161 162
                loss = self.run_parallel_exe(place, [data, label],
                                             loss=avg_cost,
                                             use_reduce=use_reduce)
C
chengduo 已提交
163 164 165 166 167 168 169 170 171 172
            else:
                loss = self.run_executor(place, [data, label], loss=avg_cost)

        return loss

    def test_weight_decay(self):
        model = partial(bow_net, is_sparse=False)
        for place in get_places():
            loss = self.check_weight_decay(place, model, use_parallel_exe=False)

C
chengduo 已提交
173
            # TODO(zcd): should test use_reduce=True
174 175 176 177
            loss2 = self.check_weight_decay(place,
                                            model,
                                            use_parallel_exe=True,
                                            use_reduce=False)
C
chengduo 已提交
178 179

            for i in range(len(loss)):
C
chengduo 已提交
180
                self.assertTrue(
181 182 183
                    np.isclose(a=loss[i], b=loss2[i], rtol=5e-5),
                    "Expect " + str(loss[i]) + "\n" + "But Got" +
                    str(loss2[i]) + " in class " + self.__class__.__name__)
C
chengduo 已提交
184 185 186 187


if __name__ == '__main__':
    unittest.main()