optimizer.py 39.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
wanghaoshuang 已提交
14
import re
15
from collections import defaultdict
W
Wu Yi 已提交
16
from paddle.fluid.framework import Program, Variable
17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26
from contextlib import contextmanager
27

28
__all__ = [
Q
qiaolongfei 已提交
29
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
30
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
31
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
Q
qiaolongfei 已提交
32
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'Optimizer'
33
]
Q
Qiao Longfei 已提交
34 35 36 37 38 39


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
40 41
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
42 43
    """

W
Wu Yi 已提交
44 45 46 47
    def __init__(self,
                 learning_rate,
                 regularization=None,
                 LARS_weight_decay=0.0):
48 49
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
50
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
51
        self.regularization = regularization
52
        self._learning_rate = learning_rate
D
dzhwinter 已提交
53 54
        # the learning rate type should be inferenced from loss
        self._dtype = None
55 56
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
57
        self._learning_rate_map = dict()
58 59 60
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
61 62 63 64 65
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
66
        self.helper = None
W
Wu Yi 已提交
67
        self._LARS_weight_decay = LARS_weight_decay
Q
Qiao Longfei 已提交
68

Q
Qiao Longfei 已提交
69
    def _create_global_learning_rate(self):
70
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
71

72 73 74 75
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
76
                raise TypeError(
77 78
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
79

80 81 82 83 84 85
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
86
            dtype='float32' if self._dtype == None else self._dtype,
87 88 89
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
90 91 92 93
        """
        get global decayed learning rate
        :return:
        """
94 95
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
96
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
97

Q
Qiao Longfei 已提交
98 99 100 101 102
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

103 104 105 106
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
107 108 109 110
        if type(param_lr) == Variable:
            # param learning rate has been updated (LARS)
            print("returns updated param lr ", param_lr)
            return param_lr
Q
qiaolongfei 已提交
111
        else:
W
Wu Yi 已提交
112 113 114 115
            if param_lr == 1.0:
                return self.global_learning_rate()
            else:
                return self.global_learning_rate() * param_lr
116 117 118 119 120 121 122

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
123
        """
124 125
        pass

126 127 128 129 130 131 132 133 134 135 136 137 138
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

139 140 141 142 143 144
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
145 146 147 148 149 150 151 152 153 154 155
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
156
            raise Exception("Accumulator {} already exists for parameter {}".
157
                            format(name, param.name))
158 159
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
160 161
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
162
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
163
            persistable=True,
F
fengjiayi 已提交
164
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
165
            type=param.type,
166
            shape=shape)
Q
Qiao Longfei 已提交
167
        self.helper.set_variable_initializer(
168
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
169
        self._accumulators[name][param.name] = var
170
        return var
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
188 189 190
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
191
                                 startup_program=None):
Q
Qiao Longfei 已提交
192 193 194 195 196 197 198
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
199 200 201 202
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
203
          :param startup_program:
Q
Qiao Longfei 已提交
204
        """
205 206 207 208 209
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
210
        # for parameters and extend _finish_update method to add custom ops.
211 212

        # Create any accumulators
Q
Qiao Longfei 已提交
213
        program = loss.block.program
D
dzhwinter 已提交
214
        self._dtype = loss.dtype
215
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
216 217
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
218 219 220
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
221
            self._create_global_learning_rate()
W
Wu Yi 已提交
222 223 224 225
            if self._LARS_weight_decay > 0.0:
                layers.append_LARS(parameters_and_grads,
                                   self.global_learning_rate(),
                                   self._LARS_weight_decay)
226 227 228

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
Y
yuyang18 已提交
229 230 231 232 233 234 235
                with param_and_grad[0].block.program.optimized_guard(
                        param_and_grad[0]):
                    if param_and_grad[0].trainable is True and param_and_grad[
                            1] is not None:
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
236 237 238

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
239
            self._finish_update(loss.block)
240

Y
Yancey1989 已提交
241 242
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
243

Q
Qiao Longfei 已提交
244 245
    def minimize(self,
                 loss,
246
                 startup_program=None,
Q
Qiao Longfei 已提交
247 248
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
249 250
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
251
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
252 253
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
254
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
255
                                       [error_clip_callback])
Y
Yu Yang 已提交
256

Y
Yu Yang 已提交
257 258
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
259 260
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
261
        # Add regularization if any
D
dzhwinter 已提交
262 263
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
264

Q
Qiao Longfei 已提交
265
        optimize_ops = self.create_optimization_pass(params_grads, loss,
266
                                                     startup_program)
T
typhoonzero 已提交
267
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
268 269 270 271 272 273


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
274
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
275
        assert learning_rate is not None
Q
Qiao Longfei 已提交
276 277
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
278 279
        self.type = "sgd"

280 281
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
282

Q
Qiao Longfei 已提交
283 284 285 286 287 288
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
289
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
290
            },
291
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
292 293

        return sgd_op
294 295 296 297 298 299 300


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
301
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
302 303
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
304 305
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
306 307
        self.type = "momentum"
        self._momentum = momentum
308
        self._use_nesterov = bool(use_nesterov)
309 310 311 312 313

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
314
            self._add_accumulator(self._velocity_acc_str, p)
315 316 317 318 319 320 321 322 323 324 325 326 327

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
328
                "LearningRate": self._create_param_lr(param_and_grad)
329 330 331 332 333
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
334
            attrs={"mu": self._momentum,
335
                   "use_nesterov": self._use_nesterov})
336 337

        return momentum_op
338 339 340 341 342 343 344


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
345
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
346 347
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
348 349
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
350 351 352 353 354 355 356
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
357
            self._add_accumulator(self._moment_acc_str, p)
358 359 360 361 362 363 364

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

365
        # Create the adagrad optimizer op
366 367 368 369 370 371
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
372
                "LearningRate": self._create_param_lr(param_and_grad)
373 374 375 376 377 378
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
379 380 381 382 383 384 385 386 387 388 389 390


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
391
                 epsilon=1e-8,
D
dzhwinter 已提交
392
                 **kwargs):
393 394 395 396
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
397 398
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
399 400 401 402 403 404 405 406
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
407
        main_block = block.program.global_block()
408 409
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
410
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
411
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
412
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
413 414 415 416
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
417
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
418 419

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
420
            name=unique_name.generate('beta2_pow_acc'),
D
dzhwinter 已提交
421
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
422 423 424 425 426
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
427
            self._beta2_pow_acc, initializer=Constant(self._beta2))
428 429 430

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
431 432
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
433 434 435 436 437 438 439 440

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
441
        # create the adam optimize op
442 443 444 445 446
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
447
                "LearningRate": self._create_param_lr(param_and_grad),
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
470 471
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
472 473 474 475 476
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
477
        scale_beta2 = main_block.append_op(
478 479 480 481 482 483
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
484 485 486 487 488 489 490 491 492 493 494 495


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
496
                 epsilon=1e-8,
D
dzhwinter 已提交
497
                 **kwargs):
498 499 500 501
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
502 503
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
504 505 506 507 508 509 510 511
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
512
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
513
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
514
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
515 516 517 518
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
519
            self._beta1_pow_acc, initializer=Constant(self._beta1))
520 521 522

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
523 524
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
525 526 527 528 529 530 531 532 533 534 535 536 537

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
538
                "LearningRate": self._create_param_lr(param_and_grad),
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
560 561
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
562 563 564 565 566 567
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
568 569 570 571 572 573 574


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
575
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
576 577 578 579
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
580 581
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
612 613


614
class AdadeltaOptimizer(Optimizer):
615 616 617
    """
    **Adadelta Optimizer**
    Simple Adadelta optimizer with average squared grad state and
618
    average squared update state.
619 620 621 622 623 624 625 626 627 628 629 630
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
631
        learning_rate(float): global learning rate
632 633 634 635 636 637 638 639 640
        rho(float): rho in equation
        epsilon(float): epsilon in equation

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
641
    """
642

643 644 645 646
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
647 648 649 650 651 652
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
653 654 655 656 657 658 659
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
660 661
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
662 663 664 665 666 667

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
668 669
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math: `sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{v(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    where, :math: `\\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
732
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
        momentum(float): :math: `\\beta` in equation is the momentum term,
            set 0.0 by default.

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
                 **kwargs):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum
            })

        return rmsprop_op


Q
qiaolongfei 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

    def __init__(self, learning_rate, l1=0.0, l2=0.0, lr_power=-0.5, **kwargs):
        super(FtrlOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


920 921 922 923 924 925 926 927 928 929 930 931 932 933
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
934
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
935
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
936
Ftrl = FtrlOptimizer
937 938 939 940 941 942 943 944 945 946 947 948 949


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
W
wanghaoshuang 已提交
950
        params_grads: A list of parameter-grad variable pairs.
951 952 953 954 955 956 957 958 959 960 961 962 963
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
        ...
        optimizer = fluid.optimizer.Momentum()
        _, params_grads = optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
964 965 966 967

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
968 969 970
    """

    def __init__(self,
W
wanghaoshuang 已提交
971
                 average_window_rate,
W
wanghaoshuang 已提交
972
                 params_grads=None,
973 974 975 976 977 978 979
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
980

W
wanghaoshuang 已提交
981 982 983
        self.params_grads = [] if params_grads is None else params_grads
        params = {}
        for param, grad in self.params_grads:
984 985
            if param.do_model_average != False:
                params[param.name] = (param, grad)
986 987
        for param in framework.default_main_program().global_block(
        ).all_parameters():
W
wanghaoshuang 已提交
988
            if param.name not in params and param.do_model_average != False:
989 990 991 992
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
993 994 995
                    stop_gradient=True)
                params[param.name] = (param, grad)
        self.params_grads = params.values()
996

997
        for param, grad in self.params_grads:
998
            self._append_average_accumulate_op(param)
999

1000 1001 1002 1003
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1004
                self._add_average_apply_op(block, param_grad)
1005 1006 1007 1008 1009

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1010
                self._add_average_restore_op(block, param_grad)
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    def _add_average_apply_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block.clone_variable(
            self._get_accumulator('num_accumulates', param))
        old_num_accumulates = block.clone_variable(
            self._get_accumulator('old_num_accumulates', param))
        num_updates = block.clone_variable(
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1029 1030 1031 1032
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1077 1078
    @contextmanager
    def apply(self, executor, need_restore=True):
1079 1080
        """Apply average values to parameters of current model.
        """
1081 1082 1083 1084 1085 1086
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1087 1088 1089 1090

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1091
        executor.run(self.restore_program)