test_expand_op.py 7.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
yangyaming 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
L
liym27 已提交
20
import paddle.fluid as fluid
W
wangchaochaohu 已提交
21
from paddle.fluid import compiler, Program, program_guard
Y
yangyaming 已提交
22 23


L
liym27 已提交
24
# Situation 1: expand_times is a list(without tensor)
Y
yangyaming 已提交
25 26 27
class TestExpandOpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
28 29 30 31 32
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {'expand_times': self.expand_times}
        output = np.tile(self.inputs['X'], self.expand_times)
Y
yangyaming 已提交
33 34
        self.outputs = {'Out': output}

L
liym27 已提交
35
    def init_data(self):
36
        self.ori_shape = [100]
L
liym27 已提交
37 38
        self.expand_times = [2]

Y
yangyaming 已提交
39 40 41 42 43 44 45
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
46 47 48 49
class TestExpandOpRank2_Corner(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
50 51


L
liym27 已提交
52 53 54 55
class TestExpandOpRank2(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
56 57


L
liym27 已提交
58 59 60 61
class TestExpandOpRank3_Corner(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5)
        self.expand_times = (1, 1, 1)
Y
yangyaming 已提交
62 63


L
liym27 已提交
64 65 66 67 68
class TestExpandOpRank3(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5)
        self.expand_times = (2, 1, 4)

Y
yangyaming 已提交
69

L
liym27 已提交
70 71 72 73
class TestExpandOpRank4(TestExpandOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.expand_times = (3, 2, 1, 2)
Y
yangyaming 已提交
74

L
liym27 已提交
75 76 77

# Situation 2: expand_times is a list(with tensor)
class TestExpandOpRank1_tensor_attr(OpTest):
78 79
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
80 81 82 83 84 85
        self.init_data()
        expand_times_tensor = []
        for index, ele in enumerate(self.expand_times):
            expand_times_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

86
        self.inputs = {
L
liym27 已提交
87 88
            'X': np.random.random(self.ori_shape).astype("float32"),
            'expand_times_tensor': expand_times_tensor,
89
        }
L
liym27 已提交
90 91
        self.attrs = {"expand_times": self.infer_expand_times}
        output = np.tile(self.inputs['X'], self.expand_times)
92 93
        self.outputs = {'Out': output}

L
liym27 已提交
94 95 96 97 98
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
        self.infer_expand_times = [-1]

99 100 101 102 103 104 105
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
106 107 108 109 110
class TestExpandOpRank2_Corner_tensor_attr(TestExpandOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.infer_expand_times = [1, -1]
Y
yangyaming 已提交
111 112


L
liym27 已提交
113 114 115 116 117
class TestExpandOpRank2_attr_tensor(TestExpandOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
        self.infer_expand_times = [-1, 3]
Y
yangyaming 已提交
118 119


L
liym27 已提交
120 121
# Situation 3: expand_times is a tensor
class TestExpandOpRank1_tensor(OpTest):
122 123
    def setUp(self):
        self.op_type = "expand"
L
liym27 已提交
124 125
        self.init_data()

126
        self.inputs = {
L
liym27 已提交
127 128
            'X': np.random.random(self.ori_shape).astype("float32"),
            'ExpandTimes': np.array(self.expand_times).astype("int32"),
129 130
        }
        self.attrs = {}
L
liym27 已提交
131
        output = np.tile(self.inputs['X'], self.expand_times)
132 133
        self.outputs = {'Out': output}

L
liym27 已提交
134 135 136
    def init_data(self):
        self.ori_shape = [12]
        self.expand_times = [2]
Y
yangyaming 已提交
137 138 139 140 141 142 143 144

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


L
liym27 已提交
145 146 147 148
class TestExpandOpRank2_tensor(TestExpandOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [2, 3]
Y
yangyaming 已提交
149 150


L
liym27 已提交
151
# Situation 4: input x is Integer
152 153 154
class TestExpandOpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand"
J
jerrywgz 已提交
155 156 157 158
        self.inputs = {
            'X': np.random.randint(
                10, size=(2, 4, 5)).astype("int32")
        }
159 160 161 162 163 164 165 166
        self.attrs = {'expand_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


L
liym27 已提交
167
# Situation 5: input x is Bool
168 169 170
class TestExpandOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand"
J
jerrywgz 已提交
171
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
172 173 174 175 176 177 178 179
        self.attrs = {'expand_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
# Situation 56: input x is Integer
class TestExpandOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand"
        self.inputs = {
            'X': np.random.randint(
                10, size=(2, 4, 5)).astype("int64")
        }
        self.attrs = {'expand_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


196
class TestExpandError(unittest.TestCase):
W
wangchaochaohu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
    def test_errors(self):
        with program_guard(Program(), Program()):
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            expand_times = [2, 2]
            self.assertRaises(TypeError, fluid.layers.expand, x1, expand_times)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.expand, x2, expand_times)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
            x3.stop_gradient = True
            self.assertRaises(ValueError, fluid.layers.expand, x3, expand_times)


L
liym27 已提交
210
# Test python API
211
class TestExpandAPI(unittest.TestCase):
L
liym27 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
        x = fluid.layers.data(
            name='x', shape=[12, 14], append_batch_size=False, dtype="float32")

        positive_2 = fluid.layers.fill_constant([1], "int32", 2)
        expand_times = fluid.layers.data(
            name="expand_times", shape=[2], append_batch_size=False)

        out_1 = fluid.layers.expand(x, expand_times=[2, 3])
        out_2 = fluid.layers.expand(x, expand_times=[positive_2, 3])
        out_3 = fluid.layers.expand(x, expand_times=expand_times)

L
liym27 已提交
225 226
        g0 = fluid.backward.calc_gradient(out_2, x)

L
liym27 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
                                      feed={
                                          "x": input,
                                          "expand_times":
                                          np.array([1, 3]).astype("int32")
                                      },
                                      fetch_list=[out_1, out_2, out_3])
        assert np.array_equal(res_1, np.tile(input, (2, 3)))
        assert np.array_equal(res_2, np.tile(input, (2, 3)))
        assert np.array_equal(res_3, np.tile(input, (1, 3)))


Y
yangyaming 已提交
240 241
if __name__ == "__main__":
    unittest.main()