test_fleet.py 3.3 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.incubate.fleet.base.role_maker as role_maker


class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        try:
            import netifaces
        except:
            print("warning: no netifaces, skip test_pslib_1")
            return
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
        role_maker.generate_role()
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        fleet.init(role_maker)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            emb = fluid.layers.embedding(input=show, size=[1, 1], \
                is_sparse=True, is_distributed=True, \
                param_attr=fluid.ParamAttr(name="embedding"))
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(
                adam,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourSparseValueAccessor"
                    }
                })
            adam.minimize([cost], [scope])
            fleet.run_server()
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()