data_feeder.py 4.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17 18 19
from __future__ import print_function
import core
import numpy
import six.moves as six

F
fengjiayi 已提交
20
from framework import Variable, default_main_program
Y
Yu Yang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
        if dtype == core.DataType.FP32:
            self.dtype = 'float32'
        elif dtype == core.DataType.INT64:
            self.dtype = 'int64'
        elif dtype == core.DataType.FP64:
            self.dtype = 'float64'
        elif dtype == core.DataType.INT32:
            self.dtype = 'int32'
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
                             "float64]")

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
            self.lod.append([0])

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
            cur_lod_len = len(data)
            lod[-1].append(lod[-1][-1] + cur_lod_len)
            for each_data in data:
                self._feed_impl_(each_data, lod[:-1], lod_level - 1)

    def done(self):
        arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape)
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
            t.set_lod(self.lod)
        return t


class DataFeeder(object):
F
fengjiayi 已提交
70
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
71 72 73 74
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
75 76
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
77
        for each_var in feed_list:
F
fengjiayi 已提交
78 79
            if isinstance(each_var, basestring):
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict