dist_default.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18 19 20 21 22 23 24
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..dist_attribute import OperatorDistributedAttribute
26 27 28 29 30
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
31
from ..process_group import new_process_group
32 33 34
from ..utils import _get_comm_group, _get_corresponding_rank


35
class DistributedDefault(DistributedOperatorImplContainer):
36 37 38 39 40
    def __init__(self, name):
        super(DistributedDefault, self).__init__()
        self._name = name


41 42
register_distributed_operator_impl_container("default",
                                             DistributedDefault("default"))
43 44


45
# Replicated Default
46 47 48 49 50 51 52
class DistributedDefaultImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedDefaultImpl0, self).__init__()
        self._name = name
        self._forward_implemented = True
        self._backward_implemented = True

53
    def is_input_compatible(self, dist_op):
54 55
        raise NotImplementedError("Please Implement this method.")

56
    def is_output_compatible(self, dist_op):
57 58
        raise NotImplementedError("Please Implement this method.")

59
    def update_dims_mapping(self, dist_op):
60 61 62 63 64
        raise NotImplementedError("Please Implement this method.")

    @staticmethod
    def forward(ctx, *args, **kwargs):

65 66 67 68 69
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
70

71
        # check validation of inputs / outputs
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(src_op.desc)
        for input_name in src_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in src_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

        # param initialization sync
        for varname in dist_op_desc.input_arg_names():
            if startup_block.has_var(varname) and startup_block.var(
                    varname
100 101
            ).is_parameter and varname not in dist_op_context.already_init_sync_vars:
                dist_op_context.already_init_sync_vars.add(varname)
102
                param = startup_block.var(varname)
103 104 105
                param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
                process_mesh = param_dist_attr.process_mesh
                dims_mapping = param_dist_attr.dims_mapping
106 107

                # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
108 109 110
                if rank_id not in process_mesh.processes:
                    rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                      rank_id)
111

112
                # NOTE all not splited axis should be presented in mesh
113 114 115 116
                for axis, size in enumerate(process_mesh.topology):
                    if size <= 1 or axis in dims_mapping:
                        pass
                    else:
117 118 119
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      axis, rank_id)
120 121 122 123 124 125 126 127 128 129 130 131 132 133
                        sync_group = new_process_group(group_ranks)

                        new_op = startup_block.append_op(
                            type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': sync_group.id,
                                'root': 0,
                                'use_calc_stream': True,
                                OP_ROLE_KEY: OpRole.Forward
                            })

                        # set distributed attribute
134 135
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
136 137 138
                        op_attr.set_output_dims_mapping(param.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(param.name, dims_mapping)
139
                        ctx.set_op_dist_attr_for_program(new_op, op_attr)
140 141 142 143 144 145 146

                startup_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
147 148 149 150
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        backward_op = dist_op_context.get_cur_src_op()
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
151 152
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
153
        rank_id = dist_op_context.get_rank_id()
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        # check validation of inputs / outputs
        for input_name in backward_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                backward_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in backward_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                backward_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(backward_op.desc)
        for input_name in backward_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in backward_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

180
        # check if need gradient allreduce
181
        # if there is a non-gradient & non-parameter input and its batch dimension is splited,
182 183 184 185 186 187 188 189
        # we need insert gradient allreduce for the gradient of parameter in its output
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and not main_block.var(
                        varname).is_parameter:

                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
190
                    process_mesh = dist_attr.process_mesh
191 192 193
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
194 195 196
                    if rank_id not in process_mesh.processes:
                        rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                          rank_id)
197 198 199 200 201

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
202 203 204
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      batch_size_axis, rank_id)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                        dp_degree = len(group_ranks)
                        dp_group = new_process_group(group_ranks)
                        break

        if need_gradient_allreduce:
            allreduce_vars = []
            for input_name in backward_op.desc.input_names():
                for varname in backward_op.desc.input(input_name):
                    if "@GRAD" not in varname and main_block.var(
                            varname).is_parameter:
                        assert len(
                            backward_op.desc.input(input_name)
                        ) == 1, "parameter input to grad op should be length 1, but got [{}]".format(
                            backward_op.desc.input(input_name))

                        assert varname + "@GRAD" in backward_op.desc.output_arg_names(
                        ), "parameter's grad [{}] not found in the grad op's output".format(
                            varname + "@GRAD")
                        assert len(
                            backward_op.desc.output(input_name + "@GRAD")
                        ) == 1, "parameter grad of grad op should be length 1, but got [{}]".format(
                            backward_op.desc.output(input_name + "@GRAD"))
                        allreduce_vars.append(
                            backward_op.desc.output(input_name + "@GRAD")[0])

            if len(allreduce_vars) > 0:

                for varname in allreduce_vars:

                    grad_var = main_block.var(varname)
                    allreduce_op = main_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [grad_var]},
                        outputs={'Out': [grad_var]},
                        attrs={
                            'ring_id': dp_group.id,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Backward
                        })

                    scale_op = main_block.append_op(
                        type='scale',
                        inputs={'X': grad_var},
                        outputs={'Out': grad_var},
                        attrs={
                            'scale': 1.0 / dp_degree,
                            OP_ROLE_KEY: OpRole.Backward
                        })

254 255 256
                    dims_mapping = ctx.get_tensor_dist_attr_for_program(
                        grad_var).dims_mapping
                    process_mesh = dist_attr.process_mesh
257
                    for op in [allreduce_op, scale_op]:
258 259
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
260 261 262 263
                        op_attr.set_output_dims_mapping(grad_var.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(grad_var.name,
                                                       dims_mapping)
264
                        ctx.set_op_dist_attr_for_program(op, op_attr)
265 266 267 268 269 270

                main_block._sync_with_cpp()


register_distributed_operator_impl(
    "default", DistributedDefaultImpl0("replicate_parallel"))