test_lstm_cudnn_op.py 6.6 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid.core as core
from op_test import OpTest
P
phlrain 已提交
22 23 24 25 26
import paddle.fluid as fluid

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
P
phlrain 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def lstm_naive(
        input,
        w, ):
    seq_len, batch_size, hidden_size = input.shape

    offset = 0
    wi = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wf = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wc = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wo = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    ri = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    rf = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    rc = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    ro = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size

    bi_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bf_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bc_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bo_1 = w[offset:offset + hidden_size]
    offset += hidden_size

    bi_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bf_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bc_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bo_2 = w[offset:offset + hidden_size]

    def sigmoid(x):
P
phlrain 已提交
78 79 80 81
        y = np.copy(x)
        y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
        y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
        return 1. / (1. + np.exp(-y))
P
phlrain 已提交
82 83

    def tanh(x):
P
phlrain 已提交
84 85 86
        y = -2. * x
        y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
        return (2. / (1. + np.exp(y))) - 1.
P
phlrain 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    output = []
    pre_h = np.zeros((batch_size, hidden_size), dtype=input.dtype)
    pre_c = np.zeros((batch_size, hidden_size), dtype=input.dtype)

    for i in range(seq_len):
        emb_1 = input[i]

        input_gate = sigmoid(
            np.matmul(emb_1, wi) + np.matmul(pre_h, ri) + bi_1 + bi_2)
        forget_gate = sigmoid(
            np.matmul(emb_1, wf) + np.matmul(pre_h, rf) + bf_1 + bf_2)
        output_gate = sigmoid(
            np.matmul(emb_1, wo) + np.matmul(pre_h, ro) + bo_1 + bo_2)
        c_t_temp = tanh(
            np.matmul(emb_1, wc) + np.matmul(pre_h, rc) + bc_1 + bc_2)
        new_c = input_gate * c_t_temp + forget_gate * pre_c
        new_h = output_gate * tanh(new_c)

        pre_h = new_h
        pre_c = new_c

        output.append(new_h)

    output = np.concatenate(output, -1)
    output = output.reshape((batch_size, -1, hidden_size))

    output = output.transpose((1, 0, 2))

P
phlrain 已提交
116
    return output, pre_h, pre_c
P
phlrain 已提交
117 118 119 120 121 122 123


class TestCUDNNLstmOp(OpTest):
    def setUp(self):
        self.op_type = "cudnn_lstm"
        self.dtype = np.float32

P
phlrain 已提交
124 125 126
        num_steps = 20
        batch_size = 5
        hidden_size = 20
P
phlrain 已提交
127 128 129 130 131 132

        input_weight_size = (hidden_size * hidden_size) * 4
        hidden_weight_size = (hidden_size * hidden_size) * 4
        weight_size = input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8

P
phlrain 已提交
133 134 135 136 137
        input = np.random.uniform(
            low=-0.1, high=0.1, size=(num_steps, batch_size,
                                      hidden_size)).astype(self.dtype)
        flat_w = np.random.uniform(
            low=-0.1, high=0.1, size=(weight_size)).astype(self.dtype)
P
phlrain 已提交
138

P
phlrain 已提交
139
        output, last_hidden, last_cell = lstm_naive(input, flat_w)
P
phlrain 已提交
140 141 142

        init_h = np.zeros((batch_size, hidden_size), dtype=np.float32)
        init_c = np.zeros((batch_size, hidden_size), dtype=np.float32)
P
phlrain 已提交
143 144 145 146 147 148 149 150 151
        scope = core.Scope()
        program = fluid.Program()
        block = program.global_block()

        cache_temp = block.create_var(
            name="Cache",
            persistable=True,
            type=core.VarDesc.VarType.RAW,
            stop_gradient=True)
P
phlrain 已提交
152 153 154 155 156 157
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'W': OpTest.np_dtype_to_fluid_dtype(flat_w),
            'InitH': OpTest.np_dtype_to_fluid_dtype(init_h),
            'InitC': OpTest.np_dtype_to_fluid_dtype(init_c),
        }
P
phlrain 已提交
158
        self.cache_name_list = ['Cache']
P
phlrain 已提交
159 160 161 162 163 164 165 166
        self.attrs = {
            'max_len': num_steps,
            'dropout_prob': 0.0,
            'is_bidirec': False,
            'input_size': hidden_size,
            'hidden_size': hidden_size,
            'num_layers': 1,
        }
P
phlrain 已提交
167 168 169 170 171
        self.outputs = {
            'Out': output,
            "last_h": last_hidden,
            'last_c': last_cell
        }
P
phlrain 已提交
172 173

    def test_output_with_place(self):
174
        # depend on the scope structure
175
        if self.has_cuda():
P
phlrain 已提交
176
            place = core.CUDAPlace(0)
177
            self.check_output_with_place(place, atol=1e-5, check_dygraph=False)
P
phlrain 已提交
178

P
phlrain 已提交
179
    def test_grad_with_place(self):
180
        # depend on the scope structure
P
phlrain 已提交
181 182 183 184 185 186
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'W', 'InitH', 'InitC']),
                ['Out', 'last_h', 'last_c'],
187 188
                max_relative_error=0.02,
                check_dygraph=False)
P
phlrain 已提交
189

190
    def has_cuda(self):
P
phlrain 已提交
191 192
        return core.is_compiled_with_cuda()

P
phlrain 已提交
193 194 195

if __name__ == '__main__':
    unittest.main()