group_sharded.py 9.6 KB
Newer Older
B
Baibaifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging
from enum import Enum

import paddle

from paddle.optimizer import Optimizer
from paddle.distributed.utils import get_logger
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2 import ShardingOptimizerStage2
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import ShardingStage2
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3 import ShardingStage3
from paddle.distributed.fleet.meta_parallel.sharding.sharding_utils import ShardingScaler

logger_ = get_logger(logging.INFO)


def group_sharded_parallel(model,
                           optimizer,
                           level,
                           scaler=None,
                           group=None,
                           offload=False,
                           sync_buffers=False,
                           buffer_max_size=2**23,
                           segment_size=2**20,
                           sync_comm=False):
    """
B
Baibaifan 已提交
42 43
    Use group_sharded_parallel can perform group shared configuration on the model, optimizer and GradScaler. Level has three string options, 'os', 'os_g' and 'p_g_os' corresponds to three different usage scenarios: optimizer state segmentation, optimizer state + gradient segmentation, and parameter + gradient + optimizer state segmentation.
    Usually, optimizer state + gradient segmentation is actually a re optimization of optimizer state segmentation, so optimizer state + gradient segmentation can be used to realize optimizer state segmentation.
B
Baibaifan 已提交
44 45 46 47 48

    Args:
        model (Layer): The layer to be wrapped with group_sharded_parallel.
        optimizer (Optimizer): The optimizer to be wrapped with group_sharded_parallel.
        level (str): The different level of the group sharded. Such as `os`, `os_g`, `p_g_os`.
B
Baibaifan 已提交
49 50 51 52 53 54 55
        scaler (GradScaler, optional): If AMP is used, you need to pass GradScaler. Defaults to None, indicating that GradScaler is not used.
        group (Group, optional): The group instance. Defaults to None, indicating that the default environment group is used.
        offload (bool, optional): Whether to use the offload function. Defaults to False, which means that the offload function is not used.
        sync_buffers (bool, optional): Whether to broadcast model buffers. It is generally used when there are registered model buffers. Defaults to False, indicating that model buffers are not used.
        buffer_max_size (int, optional): The max size of the buffer used to integrate gradient in `os_g`. The larger the size, the more GPU memory will be used. Defaults to 2**23, which means that the dimension of the buffer is 2**23.
        segment_size (int, optional): The smallest size of parameter to be sharded in `p_g_os`. Defaults to 2**20, indicating that the dimension of the minimum segmented parameter is 2**20.
        sync_comm (bool, optional): Whether to use synchronous communication, only in `p_g_os` used. Defaults to False, indicating that asynchronous communication is used.
B
Baibaifan 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    
    Returns:
        model: A wrapper for group sharded given model.
        optimizer: A wrapper for group sharded given optimizer.
        scaler: A wrapper for group sharded given scaler.
    
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
    """
    # check optition type
    assert isinstance(
        model,
        paddle.nn.Layer), "The model must be the instance of paddle.nn.Layer."
    assert isinstance(
        optimizer, Optimizer
    ), "The optimizer must be the instance of paddle.optimizer.Optimizer."
    assert level in ['os', 'os_g', 'p_g_os'
                     ], "The level must be os, os_g or p_g_os."

    def check_dtype(param):
        return param.dtype == paddle.float16

B
Baibaifan 已提交
105
    params_fp16 = list(filter(check_dtype, model.parameters()))
B
Baibaifan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if scaler is None and len(params_fp16) > 0:
        raise ValueError("Please enter the correct scaler.")
    # convert model/optimizer/scaler
    if level in ['os', 'os_g']:
        logger_.info("*" * 30)
        logger_.info("Sharded level os uses sharded level os_g achieved now.")
        logger_.info("*" * 30)
        optimizer = ShardingOptimizerStage2(
            params=model.parameters(),
            optim=optimizer,
            group=group,
            offload=offload)
        model = ShardingStage2(
            model,
            optimizer,
            group=group,
            sync_buffers=sync_buffers,
            buffer_max_size=buffer_max_size)
    elif level == 'p_g_os':
        model = ShardingStage3(
            model,
            optimizer=optimizer,
            group=group,
            sync_buffers=sync_buffers,
            segment_size=segment_size,
            offload=offload,
            sync_comm=sync_comm)
    else:
        raise ValueError("Please enter the correct level.")
    if params_fp16 and isinstance(scaler, paddle.amp.GradScaler):
        scaler = ShardingScaler(scaler)
    logger_.info("*" * 30)
    logger_.info(
        "If there is a communication hang using group sharded, please check whether the communication operations of each process are unified."
    )
    logger_.info("*" * 30)

    return model, optimizer, scaler


def save_group_sharded_model(model, output, optimizer=None):
    """
    Group sharded encapsulated model and optimizer state saving module.

B
Baibaifan 已提交
150 151 152
    .. note::
        If using save_group_sharded_model saves the model. When loading again, you need to set the model or optimizer state before using group_sharded_parallel.

B
Baibaifan 已提交
153 154 155
    Args:
        model (Layer): A wrapper for group sharded given model.
        output (str): Save directory.
B
Baibaifan 已提交
156
        optimizer (Optimizer, optional): Group sharded encapsulated optimizer. Defaults to None, indicating that the optimizer state is not saved.
B
Baibaifan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()

            # save model and optimizer state_dict
B
Baibaifan 已提交
189
            save_group_sharded_model(model, optimizer, output=output_dir)
B
Baibaifan 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    """
    logger_.info(
        "==========Begin to save group sharded model and optimizer==========")
    assert not os.path.isfile(
        output
    ), "Saving directory ({}) should be a directory, not a file".format(output)
    os.makedirs(output, exist_ok=True)
    output_model = os.path.join(output, "model.pdmodel")
    if isinstance(model, ShardingStage2):
        paddle.save(model._layer.state_dict(), output_model)
    elif isinstance(model, ShardingStage3):
        convert2cpu = True if model._offload else False
        model.get_all_parameters(convert2cpu=convert2cpu)
        paddle.save(model._layer.state_dict(), output_model)
    else:
        raise ValueError(
            "Please use the layer which is wrapped with group_sharded_parallel.")

    if optimizer is not None:
        assert hasattr(
            optimizer, "_optim"
        ), "Please use the optimizer which is wrapped with group_sharded_parallel."
        output_opt = os.path.join(output, "model.pdopt")
        paddle.save(optimizer._optim.state_dict(), output_opt)
    logger_.info(
        "==========End to save group sharded model and optimizer==========")