matmul_v2_op.h 10.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/operators/math/complex_functors.h"
S
ShenLiang 已提交
26 27
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

Z
zyfncg 已提交
28
// only can include the headers in paddle/pten/api dirs
29
#include "paddle/pten/api/lib/utils/tensor_utils.h"
30
#include "paddle/pten/kernels/matmul_grad_kernel.h"
31
#include "paddle/pten/kernels/matmul_kernel.h"
Z
zyfncg 已提交
32

33
#if defined(__NVCC__) || defined(__HIPCC__)
34
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
S
ShenLiang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
Z
zyfncg 已提交
51 52 53 54 55 56 57 58 59

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    Out->mutable_data<T>(X->place());

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*X);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*Y);
    auto pt_out = paddle::experimental::MakePtenDenseTensor(*Out);

    // call new kernel
60 61
    pten::MatmulKernel<T>(dev_ctx, *pt_x, *pt_y, trans_x, trans_y,
                          pt_out.get());
S
ShenLiang 已提交
62 63 64
  }
};

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

S
ShenLiang 已提交
138 139 140 141
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
142 143
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
144 145 146
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
S
ShenLiang 已提交
147 148 149 150

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

151 152
    if (dx) dx->mutable_data<T>(ctx.GetPlace());
    if (dy) dy->mutable_data<T>(ctx.GetPlace());
C
chentianyu03 已提交
153

154 155 156 157 158 159 160
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_dx = dx ? paddle::experimental::MakePtenDenseTensor(*dx)
                    : std::unique_ptr<pten::DenseTensor>(nullptr);
    auto pt_dy = dy ? paddle::experimental::MakePtenDenseTensor(*dy)
                    : std::unique_ptr<pten::DenseTensor>(nullptr);
161

162
    auto& dev_ctx = ctx.device_context<DeviceContext>();
W
wawltor 已提交
163

164 165 166
    // call new kernel
    pten::MatmulGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, transpose_x,
                              transpose_y, pt_dx.get(), pt_dy.get());
S
ShenLiang 已提交
167 168 169
  }
};

W
wawltor 已提交
170 171 172 173
template <typename DeviceContext, typename T>
class MatMulV2DoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
174 175 176
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
W
wawltor 已提交
177 178 179 180 181 182 183 184 185 186
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");

    auto* dx = context.Output<framework::Tensor>("DX");
    auto* dy = context.Output<framework::Tensor>("DY");
    auto* ddout = context.Output<framework::Tensor>("DDOut");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

187 188 189
    if (dx) dx->mutable_data<T>(context.GetPlace());
    if (dy) dy->mutable_data<T>(context.GetPlace());
    if (ddout) ddout->mutable_data<T>(context.GetPlace());
W
wawltor 已提交
190

191 192 193 194 195 196 197 198
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_ddx = paddle::experimental::MakePtenDenseTensor(*ddx);
    auto pt_ddy = paddle::experimental::MakePtenDenseTensor(*ddy);
    auto pt_dx = paddle::experimental::MakePtenDenseTensor(*dx);
    auto pt_dy = paddle::experimental::MakePtenDenseTensor(*dy);
    auto pt_ddout = paddle::experimental::MakePtenDenseTensor(*ddout);
W
wawltor 已提交
199

200
    auto& dev_ctx = context.device_context<DeviceContext>();
W
wawltor 已提交
201

202 203 204 205
    // call new kernel
    pten::MatmulDoubleGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, *pt_ddx,
                                    *pt_ddy, transpose_x, transpose_y,
                                    pt_dx.get(), pt_dy.get(), pt_ddout.get());
W
wawltor 已提交
206 207
  }
};
208 209 210 211 212 213

template <typename DeviceContext, typename T>
class MatMulV2TripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    // get input
214 215 216 217 218
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    auto* d_dx = context.Input<framework::Tensor>("D_DX");
    auto* d_dy = context.Input<framework::Tensor>("D_DY");
    auto* d_ddout = context.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = context.Output<framework::Tensor>("D_X_out");
    auto* out_d_y = context.Output<framework::Tensor>("D_Y_out");
    auto* out_d_dout = context.Output<framework::Tensor>("D_DOut_out");

    auto* out_d_ddx = context.Output<framework::Tensor>("D_DDX_out");
    auto* out_d_ddy = context.Output<framework::Tensor>("D_DDY_out");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    if (out_d_x) out_d_x->mutable_data<T>(context.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(context.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(context.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(context.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(context.GetPlace());

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_ddx = paddle::experimental::MakePtenDenseTensor(*ddx);
    auto pt_ddy = paddle::experimental::MakePtenDenseTensor(*ddy);
    auto pt_d_dx = paddle::experimental::MakePtenDenseTensor(*d_dx);
    auto pt_d_dy = paddle::experimental::MakePtenDenseTensor(*d_dy);
    auto pt_d_ddout = paddle::experimental::MakePtenDenseTensor(*d_ddout);

    auto pt_out_d_x = paddle::experimental::MakePtenDenseTensor(*out_d_x);
    auto pt_out_d_y = paddle::experimental::MakePtenDenseTensor(*out_d_y);
    auto pt_out_d_dout = paddle::experimental::MakePtenDenseTensor(*out_d_dout);
    auto pt_out_d_ddx = paddle::experimental::MakePtenDenseTensor(*out_d_ddx);
    auto pt_out_d_ddy = paddle::experimental::MakePtenDenseTensor(*out_d_ddy);

    auto& dev_ctx = context.device_context<DeviceContext>();
    // call new kernel
    pten::MatmulTripleGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, *pt_ddx,
                                    *pt_ddy, *pt_d_dx, *pt_d_dy, *pt_d_ddout,
                                    transpose_x, transpose_y, pt_out_d_x.get(),
                                    pt_out_d_y.get(), pt_out_d_dout.get(),
                                    pt_out_d_ddx.get(), pt_out_d_ddy.get());
263 264 265
  }
};

S
ShenLiang 已提交
266 267
}  // namespace operators
}  // namespace paddle