pool_op_xpu.cc 7.7 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
From00 已提交
11

D
Double_V 已提交
12
#include <unordered_map>
13

F
From00 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
D
Double_V 已提交
16 17 18 19 20

#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

F
From00 已提交
21 22
using framework::Tensor;

D
Double_V 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
                              bool is_test) {
  if (pooltype == "max") {
    return xpu::Pooling_t::MAX_WITHOUT_INDEX;
  } else if (pooltype == "avg") {
    if (exclusive) {
      return xpu::Pooling_t::AVG_WITHOUT_PAD;
    } else {
      return xpu::Pooling_t::AVG_WITH_PAD;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Pool op only supports 2D and 3D input."));
  }
}
38

D
Double_V 已提交
39 40
template <typename DeviceContext, typename T>
class PoolXPUKernel : public framework::OpKernel<T> {
41 42
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
43 44 45 46 47 48 49 50 51 52
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
53 54 55 56
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP only support 2 dimension pooling!"));
57 58 59 60
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
D
Double_V 已提交
61
    int* index_data = nullptr;
62 63 64
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
65 66 67 68 69
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
70 71
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
72 73
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
74
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
D
Double_V 已提交
75
    out->mutable_data<T>(context.GetPlace());
76
    auto output = reinterpret_cast<XPUType*>(out->data<T>());
D
Double_V 已提交
77
    auto& dev_ctx = context.template device_context<DeviceContext>();
78 79
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
80 81 82
      r = xpu::max_pool2d<XPUType>(dev_ctx.x_context(), input, output,
                                   index_data, n, c, in_h, in_w, ksize, strides,
                                   paddings, true);
83
    } else if (pooling_type == "avg") {
84 85 86
      r = xpu::avg_pool2d<XPUType>(dev_ctx.x_context(), input, output, n, c,
                                   in_h, in_w, ksize, strides, paddings,
                                   !exclusive, true);
87 88 89 90 91 92 93 94
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The pool2d XPU API return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
95 96
  }
};
97

D
Double_V 已提交
98 99
template <typename DeviceContext, typename T>
class PoolGradXPUKernel : public framework::OpKernel<T> {
100 101
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
    const int* index_data = nullptr;
116 117 118 119 120 121
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument("The Pool2d XPU OP only support 2 "
                                          "dimension pooling!, but received "
                                          "%d-dimension pool kernel size",
                                          ksize.size()));
122 123 124 125 126 127 128
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
129 130 131 132 133 134 135 136
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    if (!in_x_grad) {
      return;
    }
137 138
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
139 140
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
141 142 143
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
    auto output = reinterpret_cast<const XPUType*>(out->data<T>());
    auto output_grad = reinterpret_cast<const XPUType*>(out_grad->data<T>());
D
Double_V 已提交
144
    in_x_grad->mutable_data<T>(context.GetPlace());
145
    auto input_grad = reinterpret_cast<XPUType*>(in_x_grad->data<T>());
D
Double_V 已提交
146
    auto& dev_ctx = context.template device_context<DeviceContext>();
147 148
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
149 150 151
      r = xpu::max_pool2d_grad<XPUType>(
          dev_ctx.x_context(), input, output, index_data, output_grad,
          input_grad, n, c, in_h, in_w, ksize, strides, paddings, true);
152
    } else if (pooling_type == "avg") {
153 154 155
      r = xpu::avg_pool2d_grad<XPUType>(
          dev_ctx.x_context(), input, output, output_grad, input_grad, n, c,
          in_h, in_w, ksize, strides, paddings, !exclusive, true);
156 157 158 159 160 161 162 163
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The Pool2dGrad XPU OP return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
164 165 166 167 168 169 170 171
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
172 173 174
    pool2d, ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::PoolXPUKernel<paddle::platform::XPUDeviceContext,
                       paddle::platform::float16>);
D
Double_V 已提交
175 176
REGISTER_OP_XPU_KERNEL(
    pool2d_grad,
177 178 179
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
D
Double_V 已提交
180 181

#endif