fc_mkldnn_op.cc 28.1 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19

20
namespace phi {
21
class DenseTensor;
22
}  // namespace phi
23

W
wanghuancoder 已提交
24
namespace paddle {
25
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
26 27 28 29
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
30 31 32 33

namespace paddle {
namespace operators {

34 35 36 37 38
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
39 40 41
using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
42 43 44
using framework::LoDTensor;
using framework::Tensor;
using platform::GetMKLDNNFormat;
45 46
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
M
mozga-intel 已提交
47

M
Michał Gallus 已提交
48
template <typename T_in, typename T_w, typename T_out>
49
class FCPrimitiveFactory {
M
mozga-intel 已提交
50
 public:
51
  explicit FCPrimitiveFactory(const dnnl::engine& engine) : engine_(engine) {}
52

A
Adam 已提交
53 54
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
55
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
56
                          const ExecutionContext& ctx) {
57
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
58 59
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
60 61
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
62 63
      this->Execute();
      return;
64
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
65

66
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
67 68 69 70 71 72
    PADDLE_ENFORCE_LE(
        in_col_dims, 2,
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
73 74 75 76 77 78 79 80 81 82 83 84 85
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 3,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
          input->format(), MKLDNNMemoryFormat::ncw,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

86 87
    weights_ = CreateWeightsMemory(weights);

88 89 90 91 92
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
93
    paddle::optional<dnnl::inner_product_forward::primitive_desc> fc_prim_desc;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
115
    }
116 117 118 119
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
120

121 122 123
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

124
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
125 126
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
127

128 129 130
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

131 132 133 134 135 136
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
137 138 139 140
    this->Execute();
  }

  void Execute() {
141
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
142
    if (bias_) {
143 144 145 146
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_BIAS, *bias_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
147
    } else {
148 149 150
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
151 152
    }
    astream.wait();
M
mozga-intel 已提交
153 154
  }

155
 private:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
J
jakpiase 已提交
181 182
    out->set_mem_desc({phi::vectorize(out->dims()),
                       platform::MKLDNNGetDataType<T_out>(), out->format()});
183 184
  }

185 186
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
187 188 189 190 191
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
192
    if (out->format() == MKLDNNMemoryFormat::undef) {
193
      SetOutputFormat(in->format(), out);
194
    }
M
mozga-intel 已提交
195 196
  }

197
  dnnl::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
198 199 200 201 202 203 204 205
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
206
    const auto attrs = CreateFCAttrs(ctx);
207 208 209 210
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
211
    auto dims = phi::vectorize(weights->dims());
212 213 214 215 216 217
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

218
  dnnl::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
219 220
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
221
    auto input_dims = phi::vectorize(input->dims());
222 223
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1],
                                           input_dims[2], 1};
224 225 226 227 228 229 230 231 232 233 234
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
235
    const auto attrs = CreateFCAttrs(ctx);
236 237 238 239
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
240
    auto paddle_w_dims = phi::vectorize(weights->dims());
241
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
242 243 244 245 246 247 248
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

249
  dnnl::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
250 251 252 253 254 255 256 257 258 259
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
260
    const auto attrs = CreateFCAttrs(ctx);
261 262 263 264 265
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
266 267
    auto old_w_dims = phi::vectorize(weights->dims());
    auto old_in_dims = phi::vectorize(input->dims());
268 269 270 271 272 273 274 275
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
276 277
  }

M
Michał Gallus 已提交
278
  // Convert data from one data format to another
279 280 281
  std::shared_ptr<dnnl::memory> Reorder(const memory::desc& src_desc,
                                        const memory::desc& dst_desc,
                                        void* src_data) {
A
Adam 已提交
282
    auto src_mem = memory(src_desc, engine_, src_data);
283
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
284

285
    auto reorder = dnnl::reorder(src_mem, *dst_mem);
286
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
287 288

    {
C
chenjian 已提交
289 290 291
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
292 293 294
      reorder.execute(astream, src_mem, *dst_mem);
      astream.wait();
    }
M
mozga-intel 已提交
295

296
    return dst_mem;
M
mozga-intel 已提交
297 298
  }

M
Michał Gallus 已提交
299 300
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
301
  std::shared_ptr<dnnl::memory> ReorderWithScale(
302 303
      const std::shared_ptr<memory> src_mem, const memory::desc& dst_md,
      const std::vector<float>& scale_data) {
304 305
    auto dst_mem = std::make_shared<dnnl::memory>(dst_md, engine_);
    dnnl::primitive_attr attributes;
M
Michał Gallus 已提交
306 307 308 309 310 311 312 313
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
314
    auto reorder = dnnl::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
315

316
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
317
    {
C
chenjian 已提交
318 319 320
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
321
      reorder.execute(astream,
322
                      {{DNNL_ARG_FROM, *src_mem}, {DNNL_ARG_TO, *dst_mem}});
323 324
      astream.wait();
    }
M
Michał Gallus 已提交
325 326 327 328 329

    return dst_mem;
  }

  template <typename T>
330
  static dnnl::memory::desc CreateMemDescriptor(
A
Adam 已提交
331
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
332 333
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
334 335
  }

M
Michał Gallus 已提交
336
  template <typename T>
337 338
  static dnnl::memory::desc CreateMemDescriptor(const Tensor* tensor,
                                                MKLDNNMemoryFormat format) {
339
    auto dims = phi::vectorize(tensor->dims());
M
Michał Gallus 已提交
340
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
341 342
  }

M
Michał Gallus 已提交
343
  template <typename T>
344 345
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc,
                            const Tensor* tensor) {
A
Adam 已提交
346
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
347 348
  }

349
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc, void* data) {
A
Adam 已提交
350
    return memory(desc, engine_, data);
M
mozga-intel 已提交
351 352
  }

353
  template <typename T>
354 355
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, const Tensor* tensor) {
356 357 358 359
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

360 361
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, void* data) {
362 363 364 365
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
366
  std::shared_ptr<dnnl::memory> CreateWeightsMemory(const Tensor* weights) {
367
    auto dims = phi::vectorize(weights->dims());
368
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
369 370
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
371
    // Transpose weights through MKL-DNN's reorder from io to oi format.
A
Adam 已提交
372 373
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
374 375
  }

376 377
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
378 379 380
    std::string key = platform::CreateKey(dev_ctx);
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

381 382 383 384 385 386
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
411 412
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
413 414
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
415 416
    bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
417

M
Michał Gallus 已提交
418
    // If the output will be in floats, we don't multiply by scale_out.
419

420 421 422 423 424 425
    float scale = (!force_fp32_output && has_activation)
                      ? ctx.Attr<float>("Scale_out")
                      : 1.0f;
    float inner_scale = (force_fp32_output || has_activation)
                            ? 1.0f
                            : ctx.Attr<float>("Scale_out");
M
Michał Gallus 已提交
426 427 428 429 430 431
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
432
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
433 434
      else
        output_shift_scale[i] =
435
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
436 437
    }

438
    return make_tuple(output_shift_scale, scale);
M
Michał Gallus 已提交
439 440 441 442 443 444 445 446 447 448
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

449
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
450 451
    weights_ = ReorderWithScale(weights_, dst,
                                ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
452 453 454 455 456
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
457
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
458 459
  }

460
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
461 462
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
M
Michał Gallus 已提交
463

464 465 466
    std::vector<float> output_shift_scale;
    float scale;
    std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
M
Michał Gallus 已提交
467 468
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);
469

470
    float sum_scale = 1.0f;
471 472 473 474
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      post_operations.append_sum(sum_scale);
    }
M
Michał Gallus 已提交
475 476 477 478

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
479
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
M
Michał Gallus 已提交
480
                                     negative_slope, placeholder);
481 482 483
    } else if (ctx.Attr<std::string>("activation_type") == "gelu") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
484
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu,
485 486 487 488
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
489 490
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_tanh,
                                     alpha, beta);
491 492 493
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
494
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_erf,
495 496 497 498
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
499
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_tanh,
500 501 502 503
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
504
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_logistic,
505
                                     alpha, beta);
506 507 508 509 510
    } else if (ctx.Attr<std::string>("activation_type") == "mish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_mish,
                                     alpha, beta);
J
jakpiase 已提交
511 512 513
    } else if (ctx.Attr<std::string>("activation_type") == "hard_swish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
514 515
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_hardswish,
                                     alpha, beta);
M
Michał Gallus 已提交
516 517 518 519
    }

    attributes.set_post_ops(post_operations);
    return attributes;
520
  }
M
mozga-intel 已提交
521

522 523 524 525 526
  dnnl::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const dnnl::memory::desc& input_desc,
      const dnnl::memory::desc& weights_desc,
      const dnnl::memory::desc& bias_desc, const dnnl::memory::desc& dst_desc,
      const dnnl::primitive_attr& attrs) {
527 528 529
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
530

M
Michał Gallus 已提交
531
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
532
  }
M
mozga-intel 已提交
533

M
Michał Gallus 已提交
534 535
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
536 537
  dnnl::memory CreateDstMemory(
      const dnnl::inner_product_forward::primitive_desc& fc_prim_desc,
538
      const ExecutionContext& ctx, Tensor* output) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      auto* residual_param = ctx.Output<Tensor>("ResidualData");

      PADDLE_ENFORCE_EQ(
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));

      output->ShareDataWith(*residual_param);
    }

A
Adam 已提交
554 555
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
556 557
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
558
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
559
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
560

A
Adam 已提交
561
    return dst_mem;
562
  }
M
mozga-intel 已提交
563

564 565
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
566
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
567 568 569 570
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
571
    std::vector<int64_t> output_dims;
572 573
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
574
    output->Resize(phi::make_ddim(output_dims));
L
luotao1 已提交
575
    output->set_lod(input->lod());
576
  }
L
luotao1 已提交
577

578
 private:
579
  const dnnl::engine& engine_;
580 581
  paddle::optional<memory> input_;
  paddle::optional<memory> output_;
582 583
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
584
  paddle::optional<inner_product_forward> fc_;
585
};
M
mozga-intel 已提交
586

M
Michał Gallus 已提交
587 588 589 590 591 592
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
593
                    const std::string& key) {
594
  auto prim_creator =
M
Michał Gallus 已提交
595 596
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
597
  if (prim_creator == nullptr) {
598 599
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
600
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
601 602
  }

603 604
  return prim_creator;
}
M
mozga-intel 已提交
605

M
Michał Gallus 已提交
606 607 608
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
609
static void ExecuteFc(const ExecutionContext& ctx, const LoDTensor* input,
A
Adam 已提交
610
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
611 612
                      bool fuse_relu, bool force_fp32_output) {
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
613 614
  std::string prim_key = platform::CreateKey(
      dev_ctx, input->format(), input->dims()[0],
615
      phi::vectorize<int>(w->dims()), ctx.OutputName("Out"));
616 617
  prim_key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, prim_key);

M
Michał Gallus 已提交
618 619
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
620 621
  bool is_bfloat16 = std::is_same<T_in, paddle::platform::bfloat16>::value;
  if ((!is_int8 && !is_bfloat16) || force_fp32_output) {
622 623
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
624 625 626
  } else if (is_bfloat16) {
    GetPrimitiveFactory<T_in, T_w, platform::bfloat16>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
627
  } else if (fuse_relu) {
628 629
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
630
  } else {
631 632
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
633 634 635 636 637
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
638 639
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
640 641 642
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
643
    platform::MKLDNNDeviceContext::tls().log_lib_version();
644 645
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
646
    auto bias = ctx.Input<Tensor>("Bias");
647
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
648

M
Michał Gallus 已提交
649 650 651
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

652 653
    ExecuteFc<T_in, T_w>(ctx, input, w, bias, output, fuse_relu,
                         force_fp32_output);
M
mozga-intel 已提交
654

655
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
656 657 658 659 660
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
661 662 663 664 665 666 667 668
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

669 670 671 672 673
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    fc, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kFCMKLDNNFP32,
    ops::FCMKLDNNOpKernel<paddle::platform::bfloat16,
                          paddle::platform::bfloat16>);

M
Michał Gallus 已提交
674 675 676 677 678 679 680
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);