ps_gpu_wrapper.cc 45.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

31 32
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"

T
Thunderbrook 已提交
33
#include <algorithm>
Y
yaoxuefeng 已提交
34 35
#include <deque>

T
Thunderbrook 已提交
36
#include "paddle/fluid/platform/timer.h"
37 38 39 40
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/table/ctr_dymf_accessor.h"
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
#endif
T
Thunderbrook 已提交
41 42 43 44

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#ifdef PADDLE_WITH_PSLIB
void AfsWrapper::init(const std::string& fs_name, const std::string& fs_user,
                      const std::string& pass_wd, const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
80 81 82 83 84 85 86 87 88 89 90 91

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
92 93
#endif

T
Thunderbrook 已提交
94 95
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
96 97 98 99 100 101 102 103
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
104
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
105 106 107 108
  }
  use_afs_api_ = 1;
}
#endif
109
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
110
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
111 112
  platform::Timer timeline;
  timeline.Start();
113
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
114
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
115

Y
yaoxuefeng 已提交
116
  std::vector<std::thread> threads;
Y
yaoxuefeng 已提交
117 118 119 120 121 122 123 124

  // data should be in input channel

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
125
    }
Y
yaoxuefeng 已提交
126
  }
Y
yaoxuefeng 已提交
127 128 129 130

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
131
  size_t begin = 0;
Y
yaoxuefeng 已提交
132 133 134 135 136 137

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
Y
yaoxuefeng 已提交
138
    VLOG(0) << "psgpu wrapperinputslotchannle size: " << input_channel->Size();
Y
yaoxuefeng 已提交
139 140 141 142 143
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
144 145 146 147 148 149 150 151 152 153 154 155 156
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
                                      int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
               j < slot_offset[slot_offset_vector_[slot_idx] + 1]; j++) {
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
Y
yaoxuefeng 已提交
157 158 159
            if (feasign_v[j] != 0) {
              this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
            }
160 161 162 163
          }
        }
      }
    };
Y
yaoxuefeng 已提交
164
    for (int i = 0; i < thread_keys_thread_num_; i++) {
Y
yaoxuefeng 已提交
165 166 167 168
      threads.push_back(
          std::thread(gen_dynamic_mf_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));

Y
yaoxuefeng 已提交
169
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
170
    }
Y
yaoxuefeng 已提交
171 172 173 174
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
175
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
209
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
210 211 212 213
  }

  timeline.Start();

214
  threads.clear();
Y
yaoxuefeng 已提交
215
  // merge thread_keys to shard_keys
216 217 218 219 220 221 222
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, dim_id,
                               thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
223
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
Y
yaoxuefeng 已提交
224 225
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
226
    }
227 228 229
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
230 231 232
  }
  timeline.Pause();

233
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
234 235 236 237 238
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

239
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
240 241 242 243 244 245
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
              << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
      gpu_task->value_dim_ptr_[i][j].resize(
          gpu_task->feature_dim_keys_[i][j].size());
246
    }
Y
yaoxuefeng 已提交
247
  }
248 249 250 251
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
252
  std::vector<std::future<void>> task_futures;
253 254 255 256
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

257 258 259
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

260 261
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
262 263 264
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
Y
yaoxuefeng 已提交
265 266 267 268

  for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
    device_dim_keys[dev].resize(multi_mf_dim_);
    device_dim_ptr[dev].resize(multi_mf_dim_);
269
  }
Y
yaoxuefeng 已提交
270

T
Thunderbrook 已提交
271
  // auto& device_mutex = gpu_task->mutex_;
272 273 274 275 276 277

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
278
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
279
#endif
280

281
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
282 283 284 285 286 287 288 289 290 291 292
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

293
  timeline.Start();
294 295 296 297 298 299

  auto ptl_dynamic_mf_func = [this, &local_dim_keys, &local_dim_ptr,
                              &fleet_ptr](int i, int j) {
    size_t key_size = local_dim_keys[i][j].size();
    int32_t status = -1;
    int32_t cnt = 0;
300
#ifdef PADDLE_WITH_PSLIB
301 302
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
303 304
          i, reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
          this->table_id_, local_dim_keys[i][j].data(), key_size);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#endif
#ifdef PADDLE_WITH_PSCORE
    while (true) {
      auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
          reinterpret_cast<char**>(local_dim_ptr[i][j].data()), this->table_id_,
          local_dim_keys[i][j].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
#endif
362 363 364 365 366 367 368 369 370
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
              << local_dim_keys[i][j].size();
    }
  };
Y
yaoxuefeng 已提交
371 372 373 374 375 376

  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      task_futures.emplace_back(
          pull_thread_pool_[i]->enqueue(ptl_dynamic_mf_func, i, j));
377
    }
378
  }
Y
yaoxuefeng 已提交
379 380
  for (auto& f : task_futures) {
    f.wait();
381
  }
Y
yaoxuefeng 已提交
382
  task_futures.clear();
383
  timeline.Pause();
T
Thunderbrook 已提交
384
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
385
          << " seconds.";
Y
yaoxuefeng 已提交
386 387 388 389 390 391 392 393
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
394 395

  timeline.Start();
Y
yaoxuefeng 已提交
396 397 398
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
T
Thunderbrook 已提交
399 400
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
Y
yaoxuefeng 已提交
401 402 403 404
  auto build_pull_dynamic_mf_func = [this, device_num, &local_dim_keys,
                                     &local_dim_ptr, &device_dim_keys,
                                     &device_dim_ptr,
                                     &device_dim_mutex](int i, int j) {
405
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
406
#ifdef PADDLE_WITH_PSLIB
407 408
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
409 410 411 412 413 414
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> task_ptrs(
        device_num);
#endif
415 416 417 418 419
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
Y
yaoxuefeng 已提交
420
    // allocate local keys to devices
421
    for (int dev = 0; dev < device_num; dev++) {
Y
yaoxuefeng 已提交
422 423 424 425 426 427 428 429
      device_dim_mutex[dev][j]->lock();
      int len = task_keys[dev].size();
      int cur = device_dim_keys[dev][j].size();
      device_dim_keys[dev][j].resize(device_dim_keys[dev][j].size() + len);
      device_dim_ptr[dev][j].resize(device_dim_ptr[dev][j].size() + len);
      for (int k = 0; k < len; ++k) {
        device_dim_keys[dev][j][cur + k] = task_keys[dev][k];
        device_dim_ptr[dev][j][cur + k] = task_ptrs[dev][k];
430
      }
Y
yaoxuefeng 已提交
431
      device_dim_mutex[dev][j]->unlock();
432 433
    }
  };
Y
yaoxuefeng 已提交
434
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
T
Thunderbrook 已提交
435 436
                     &local_ptr, &device_task_keys, &device_task_ptrs](int i) {
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
437
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
438
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
439 440 441
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
442
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
443
#endif
444 445 446 447 448 449

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
450
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
466
#endif
T
Thunderbrook 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
  auto calc_prefix_func = [this, &prefix_sum, &device_keys, &device_vals,
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
  auto prepare_dev_value_func = [device_num, &prefix_sum, &device_keys,
                                 &device_vals, &device_task_keys,
                                 &device_task_ptrs](int dev, int shard_id) {
    auto& task_keys = device_task_keys[shard_id];
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

#ifdef PADDLE_WITH_PSCORE
515
    auto& task_ptrs = device_task_ptrs[shard_id];
T
Thunderbrook 已提交
516
#endif
517

T
Thunderbrook 已提交
518 519
    int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
520
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
544 545
        }
      }
T
Thunderbrook 已提交
546
    }
T
Thunderbrook 已提交
547 548
#endif
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();
      val.delta_score = ptr_val[2];
      val.show = ptr_val[3];
      val.clk = ptr_val[4];
      val.slot = ptr_val[0];
      val.lr = ptr_val[5];
      val.lr_g2sum = ptr_val[6];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
T
Thunderbrook 已提交
571 572
        }
      }
T
Thunderbrook 已提交
573
    }
T
Thunderbrook 已提交
574
#endif
T
Thunderbrook 已提交
575
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
576
  };
577

T
Thunderbrook 已提交
578
  if (multi_mf_dim_) {
579 580 581
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
Y
yaoxuefeng 已提交
582
            std::thread(build_pull_dynamic_mf_func, i, j);
583 584
      }
    }
T
Thunderbrook 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
599 600
  }
  timeline.Pause();
T
Thunderbrook 已提交
601
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
602
          << " seconds.";
Y
yaoxuefeng 已提交
603 604
}

605
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
606
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
607 608
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
609

610
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
611
  size_t size_max = 0;
Y
yaoxuefeng 已提交
612 613 614 615 616 617 618

  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      VLOG(1) << i << " card with dynamic mf dim: " << index_dim_vec_[j]
              << " dim index: " << j << " contains feasign nums: "
              << gpu_task->device_dim_ptr_[i][j].size();
619
    }
Y
yaoxuefeng 已提交
620 621 622
    VLOG(1) << i << " card with dynamic mf contains feasign nums total: "
            << feature_keys_count[i];
    size_max = std::max(size_max, feature_keys_count[i]);
T
Thunderbrook 已提交
623
  }
Y
yaoxuefeng 已提交
624

T
Thunderbrook 已提交
625
  if (HeterPs_) {
626 627
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
628
  }
629
  if (size_max <= 0) {
630
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
631 632
    return;
  }
633
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
634
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
F
Fan Zhang 已提交
635
#ifdef PADDLE_WITH_CUDA
636
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
F
Fan Zhang 已提交
637
#endif
Y
yaoxuefeng 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  auto build_dynamic_mf_func = [this, &gpu_task](int i, int j) {
    this->HeterPs_->set_multi_mf_dim(multi_mf_dim_, max_mf_dim_);
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "building table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
    size_t len = device_dim_keys.size();
    CHECK(len == device_dim_ptrs.size());
    this->mem_pools_[i * this->multi_mf_dim_ + j] =
        new MemoryPool(len, feature_value_size);
    auto& mem_pool = this->mem_pools_[i * this->multi_mf_dim_ + j];
    for (size_t k = 0; k < len; k++) {
      FeatureValue* val = (FeatureValue*)(mem_pool->mem_address(k));
      float* ptr_val = device_dim_ptrs[k]->data();
      size_t dim = device_dim_ptrs[k]->size();
#ifdef PADDLE_WITH_PSLIB
      val->delta_score =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::delta_score_index()];
      val->show = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                              DownpourCtrDymfFeatureValue::show_index()];
      val->clk = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                             DownpourCtrDymfFeatureValue::click_index()];
      val->slot = int(ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                  DownpourCtrDymfFeatureValue::slot_index()]);
      val->lr = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                            DownpourCtrDymfFeatureValue::embed_w_index()];
      val->lr_g2sum =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::embed_g2sum_index()];
Y
yaoxuefeng 已提交
670
      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
Y
yaoxuefeng 已提交
671 672 673
      ptr_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  mf_dim_index()] = float(mf_dim);
      val->mf_dim = mf_dim;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
#endif
#ifdef PADDLE_WITH_PSCORE
      paddle::distributed::CtrDymfAccessor accessor;
      val->delta_score =
          ptr_val[accessor.common_feature_value.DeltaScoreIndex()];
      val->show = ptr_val[accessor.common_feature_value.ShowIndex()];
      val->clk = ptr_val[accessor.common_feature_value.ClickIndex()];
      val->slot = int(ptr_val[accessor.common_feature_value.SlotIndex()]);
      val->lr = ptr_val[accessor.common_feature_value.EmbedWIndex()];
      val->lr_g2sum = ptr_val[accessor.common_feature_value.EmbedG2SumIndex()];

      val->cpu_ptr = (uint64_t)(device_dim_ptrs[k]);

      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
      ptr_val[accessor.common_feature_value.MfDimIndex()] = float(mf_dim);
      val->mf_dim = mf_dim;
Y
yaoxuefeng 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702
#endif
      if (dim > 8) {  // CpuPS alreay expand as mf_dim
        val->mf_size = mf_dim + 1;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = ptr_val[x + 8];
        }
      } else {
        val->mf_size = 0;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = 0;
        }
      }
    }
Y
yaoxuefeng 已提交
703

Y
yaoxuefeng 已提交
704
    platform::CUDADeviceGuard guard(resource_->dev_id(i));
Y
yaoxuefeng 已提交
705

Y
yaoxuefeng 已提交
706 707
    this->hbm_pools_[i * this->multi_mf_dim_ + j] = new HBMMemoryPool(mem_pool);
    auto& cur_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
Y
yaoxuefeng 已提交
708

Y
yaoxuefeng 已提交
709 710
    this->HeterPs_->build_ps(i, device_dim_keys.data(), cur_pool->mem(), len,
                             feature_value_size, 500000, 2);
Y
yaoxuefeng 已提交
711

Y
yaoxuefeng 已提交
712 713 714 715 716 717 718
    if (device_dim_keys.size() > 0) {
      VLOG(0) << "show ptr table: " << i
              << " table kv size: " << device_dim_keys.size()
              << "dim: " << mf_dim << " len: " << len;
      this->HeterPs_->show_one_table(i);
    }
    delete mem_pool;
Y
yaoxuefeng 已提交
719
  };
Y
yaoxuefeng 已提交
720 721 722 723 724
  threads.resize(device_num * multi_mf_dim_);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads[i + j * device_num] = std::thread(build_dynamic_mf_func, i, j);
    }
Y
yaoxuefeng 已提交
725
  }
Y
yaoxuefeng 已提交
726

Y
yaoxuefeng 已提交
727 728
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
729 730
  }
  timeline.Pause();
731
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
732
          << " s.";
733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }
Y
yaoxuefeng 已提交
747
  InitSlotInfo();
748 749
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
Y
yaoxuefeng 已提交
750

751
  data_ready_channel_->Put(gpu_task);
Y
yaoxuefeng 已提交
752

753 754 755 756 757
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
758
  VLOG(3) << "start build CPU ps thread.";
759
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
760 761
}

762 763
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
764 765 766 767 768
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
769
    VLOG(3) << "thread PreBuildTask start.";
770 771 772
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
773
    PreBuildTask(gpu_task);
774
    timer.Pause();
775
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
776
            << " s";
777 778 779 780 781
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

782 783 784 785 786 787 788 789 790 791
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
792
  }
793

794
  VLOG(0) << "BuildPull start.";
795 796 797 798 799
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
800
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
801 802 803
          << "s";

  current_task_ = gpu_task;
804 805 806 807 808 809 810 811 812
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
813 814

  build_task();
815
  timer.Pause();
816 817 818 819 820 821

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
822
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
823 824 825 826 827 828 829 830 831 832 833
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
Y
yaoxuefeng 已提交
834

835
  for (size_t i = 0; i < heter_devices_.size(); i++) {
Y
yaoxuefeng 已提交
836 837 838 839 840
    for (int j = 0; j < multi_mf_dim_; j++) {
      keysize_max =
          std::max(keysize_max, current_task_->device_dim_keys_[i][j].size());
    }
  }
841 842
  int thread_num = 8;
  auto dump_pool_to_cpu_func = [this, thread_num](int i, int j, int z) {
Y
yaoxuefeng 已提交
843 844 845 846
    PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(this->resource_->dev_id(i)));
    auto& hbm_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
    auto& device_keys = this->current_task_->device_dim_keys_[i][j];
    size_t len = device_keys.size();
847 848 849 850 851 852 853 854 855 856 857 858 859 860
    // ====== multi-thread process feasign================
    int len_per_thread = len / thread_num;
    int remain = len % thread_num;
    int left = -1, right = -1;
    int real_len = len_per_thread;
    if (z < remain) real_len++;
    if (z < remain) {
      left = z * (len_per_thread + 1);
      right = left + real_len;
    } else {
      left = remain * (len_per_thread + 1) + (z - remain) * len_per_thread;
      right = left + real_len;
    }
    // ============ multi-thread process feasign============
Y
yaoxuefeng 已提交
861 862 863 864
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "dump pool to cpu table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
865 866 867 868
    char* test_build_values = (char*)malloc(feature_value_size * real_len);
    uint64_t offset = left * feature_value_size;
    cudaMemcpy(test_build_values, hbm_pool->mem() + offset,
               feature_value_size * real_len, cudaMemcpyDeviceToHost);
Y
yaoxuefeng 已提交
869 870
    CHECK(len == hbm_pool->capacity());
    uint64_t unuse_key = std::numeric_limits<uint64_t>::max();
871
    for (int i = left; i < right; ++i) {
Y
yaoxuefeng 已提交
872 873 874
      if (device_keys[i] == unuse_key) {
        continue;
      }
875 876
      size_t local_offset = (i - left) * feature_value_size;
      FeatureValue* gpu_val = (FeatureValue*)(test_build_values + local_offset);
877
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
      auto* downpour_value =
          (paddle::ps::DownpourFixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  delta_score_index()] = gpu_val->delta_score;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  show_index()] = gpu_val->show;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  click_index()] = gpu_val->clk;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_w_index()] = gpu_val->lr;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_g2sum_index()] = gpu_val->lr_g2sum;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  slot_index()] = gpu_val->slot;
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
#endif
#ifdef PADDLE_WITH_PSCORE
      auto* downpour_value =
          (paddle::distributed::FixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();

      paddle::distributed::CtrDymfAccessor accessor;
      cpu_val[accessor.common_feature_value.DeltaScoreIndex()] =
          gpu_val->delta_score;
      cpu_val[accessor.common_feature_value.ShowIndex()] = gpu_val->show;
      cpu_val[accessor.common_feature_value.ClickIndex()] = gpu_val->clk;
      cpu_val[accessor.common_feature_value.EmbedWIndex()] = gpu_val->lr;
      cpu_val[accessor.common_feature_value.EmbedG2SumIndex()] =
          gpu_val->lr_g2sum;
      cpu_val[accessor.common_feature_value.SlotIndex()] = gpu_val->slot;
#endif
Y
yaoxuefeng 已提交
917 918 919 920 921 922 923 924 925 926 927
      if (gpu_val->mf_size > 0) {
        for (int x = 0; x < gpu_val->mf_dim + 1; x++) {
          cpu_val[x + 8] = gpu_val->mf[x];
        }
      }
    }
    free(test_build_values);
  };
  if (multi_mf_dim_) {
    VLOG(0) << "psgpu wrapper dump pool: multi_mf_dim_: " << multi_mf_dim_;
    size_t device_num = heter_devices_.size();
928
    std::vector<std::thread> threads(device_num * multi_mf_dim_ * thread_num);
Y
yaoxuefeng 已提交
929 930
    for (size_t i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
931 932 933 934
        for (int k = 0; k < thread_num; k++) {
          threads[(i + j * device_num) * thread_num + k] =
              std::thread(dump_pool_to_cpu_func, i, j, k);
        }
Y
yaoxuefeng 已提交
935 936 937 938 939
      }
    }
    for (std::thread& t : threads) {
      t.join();
    }
940 941 942 943
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
944

Y
yaoxuefeng 已提交
945 946 947
  for (size_t i = 0; i < hbm_pools_.size(); i++) {
    delete hbm_pools_[i];
  }
948
  gpu_task_pool_.Push(current_task_);
949 950 951
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
Y
yaoxuefeng 已提交
952
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
966
  VLOG(3) << "Begine Gpu/Xpu Ps PullSparse";
967
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
968 969 970 971 972
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
973
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
974
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
975
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
976 977 978 979 980 981 982 983 984 985
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
986
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
987
    auto buf_length =
988
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
Y
yaoxuefeng 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const std::vector<int>& slot_dim,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  size_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  size_t feature_value_size = 0;

  feature_value_size = TYPEALIGN(
      8, sizeof(FeatureValue) + sizeof(float) * (index_dim_vec_.back() + 1));

#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begine Gpu Ps PullSparse";
  auto buf = memory::Alloc(place, total_length * feature_value_size);
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PullSparse";
  FeatureValue* total_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
             total_length * feature_value_size);
#endif
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
            {int64_t(total_length), 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    auto buf_dim = memory::Alloc(place, slot_dim.size() * sizeof(int));
    int* gpu_dim = reinterpret_cast<int*>(buf_dim->ptr());
    cudaMemcpy(gpu_dim, slot_dim.data(), slot_dim.size() * sizeof(int),
               cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;

    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          total_length);

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";

    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length, gpu_dim);

    pull_gpups_timer.Pause();

F
Fan Zhang 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

F
Fan Zhang 已提交
1118 1119 1120 1121 1122
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
F
Fan Zhang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys, keys.data(),
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len, slot_lengths_lod.data(),
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

    this->CopyKeys(place, xpu_keys, total_keys, xpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, xpu_keys, values, total_values_gpu, xpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
#endif
T
Thunderbrook 已提交
1146 1147
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
1148
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
1149 1150
  }
  all_timer.Pause();
1151
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1168
  // #ifdef PADDLE_WITH_CUDA
F
Fan Zhang 已提交
1169
  VLOG(3) << "Begin GPUPS PushSparseGrad";
Y
yaoxuefeng 已提交
1170 1171 1172 1173
  size_t grad_value_size =
      TYPEALIGN(8, sizeof(FeaturePushValue) + (max_mf_dim_ * sizeof(float)));
  auto buf = memory::Alloc(place, total_length * grad_value_size);
  VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_;
T
Thunderbrook 已提交
1174 1175 1176 1177 1178 1179
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
1180
#ifdef PADDLE_WITH_CUDA
1181
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1182 1183 1184 1185 1186
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
Y
yaoxuefeng 已提交
1187 1188 1189 1190 1191 1192 1193
    if (!multi_mf_dim_) {
      this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                        hidden_size, total_length, batch_size);
    } else {
      this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                        total_length, batch_size, grad_value_size);
    }
T
Thunderbrook 已提交
1194 1195 1196 1197 1198 1199 1200

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1201
#endif
F
Fan Zhang 已提交
1202
  } else if (platform::is_xpu_place(place)) {
F
Fan Zhang 已提交
1203
#ifdef PADDLE_WITH_XPU_KP
F
Fan Zhang 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to xpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1219
#endif
T
Thunderbrook 已提交
1220 1221 1222 1223 1224
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
Y
yaoxuefeng 已提交
1225 1226
  time_3 += all_timer.ElapsedSec();
  time_4 += push_gpups_timer.ElapsedSec();
1227
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1228 1229 1230 1231 1232 1233 1234 1235
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif