eager_utils_test.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17

#include "gtest/gtest.h"
18
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
19
#include "paddle/fluid/eager/eager_tensor.h"
20 21 22 23
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"
24
#include "paddle/phi/api/lib/utils/allocator.h"
25 26 27
#include "paddle/phi/core/kernel_registry.h"

PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT);
28

29
namespace egr {
30 31 32

TEST(EagerUtils, AutoGradMeta) {
  // Construct Eager Tensor
33 34 35
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> dt0 = std::make_shared<phi::DenseTensor>(
36 37 38
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
39
      meta);
40
  dt0->mutable_data<float>(paddle::platform::CPUPlace())[0] = 10.0;
41
  paddle::experimental::Tensor et0 = paddle::experimental::Tensor(dt0);
42

43
  std::shared_ptr<phi::DenseTensor> dt1 = std::make_shared<phi::DenseTensor>(
44 45 46
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
47
      meta);
48
  dt1->mutable_data<float>(paddle::platform::CPUPlace())[0] = 20.0;
49
  paddle::experimental::Tensor et1 = paddle::experimental::Tensor(dt1);
50 51 52 53 54 55 56 57 58 59

  // unsafe_autograd_meta()
  // autograd_meta()
  AutogradMeta* autograd_meta0 = EagerUtils::autograd_meta(&et0);
  AutogradMeta* autograd_meta1 = EagerUtils::autograd_meta(&et1);

  AutogradMeta* unsafe_autograd_meta_after =
      EagerUtils::unsafe_autograd_meta(et0);
  CHECK_NOTNULL(unsafe_autograd_meta_after);

60 61 62 63
  // NOTE: Since autograd_meta will be copied make sure it's not null
  std::vector<paddle::experimental::Tensor> ets = {et0, et1};
  auto test_node = std::make_shared<eager_test::GradTestNode>();

64
  std::vector<AutogradMeta*> autograd_metas = EagerUtils::autograd_meta(&ets);
65
  std::vector<AutogradMeta*> unsafe_autograd_metas =
66
      EagerUtils::unsafe_autograd_meta(ets);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  CHECK_NOTNULL(unsafe_autograd_metas[0]);
  CHECK_NOTNULL(unsafe_autograd_metas[1]);

  // Set Autograd Meta
  autograd_meta0->SetSingleOutRankWithSlot(0, 1);

  autograd_meta0->SetGradNode(test_node);

  // OutRankInfo()
  std::pair<size_t, size_t> out_rank_info0 = EagerUtils::OutRankInfo(et0);
  CHECK_EQ(static_cast<int>(out_rank_info0.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info0.second), 1);

  // grad_node()
  std::shared_ptr<GradNodeBase> grad_node0 = EagerUtils::grad_node(et0);
  CHECK_NOTNULL(grad_node0.get());

  EagerUtils::SetHistory(autograd_meta1, test_node);
  EagerUtils::SetHistory({autograd_meta1}, test_node);
  std::shared_ptr<GradNodeBase> grad_node1 = EagerUtils::grad_node(et1);
  CHECK_NOTNULL(grad_node1.get());

  // SetOutRankWithSlot()
  EagerUtils::SetOutRankWithSlot(autograd_meta1, 0);
  std::pair<size_t, size_t> out_rank_info1 = EagerUtils::OutRankInfo(et1);
  CHECK_EQ(static_cast<int>(out_rank_info1.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info1.second), 0);

  EagerUtils::SetOutRankWithSlot(&autograd_metas, 0);
  std::pair<size_t, size_t> out_rank_info2 = EagerUtils::OutRankInfo(et0);
  CHECK_EQ(static_cast<int>(out_rank_info2.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info2.second), 0);

  std::pair<size_t, size_t> out_rank_info3 = EagerUtils::OutRankInfo(et1);
  CHECK_EQ(static_cast<int>(out_rank_info3.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info3.second), 1);
}

105
template <typename T>
106 107
paddle::experimental::Tensor CreateTestCPUTensor(
    T val, const paddle::framework::DDim& ddim) {
108 109
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, ddim);
110
  paddle::experimental::Tensor tensor;
111
  std::shared_ptr<phi::DenseTensor> dt = std::make_shared<phi::DenseTensor>(
112 113 114
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
115
      meta);
116
  auto* dt_ptr = dt->mutable_data<T>(paddle::platform::CPUPlace());
117 118 119 120 121 122
  for (int64_t i = 0; i < dt->numel(); i++) {
    dt_ptr[i] = val;
  }
  tensor.set_impl(dt);
  return tensor;
}
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
TEST(EagerUtils, ComputeRequireGrad) {
  auto auto_grad0 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad1 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad2 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad3 = std::make_shared<egr::AutogradMeta>();
  CHECK_EQ(auto_grad0->NumericStopGradient(), -1);
  VLOG(6) << "Single Test ComputeRequireGrad";
  auto_grad0->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get()) == false);
  auto_grad0->SetStopGradient(false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get()) == true);

  VLOG(6) << "Multi Test ComputeRequireGrad";
  auto_grad0->SetStopGradient(false);
  auto_grad1->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get(),
                                            auto_grad1.get()) == true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get(),
                                            auto_grad1.get()) == false);
  auto_grad0->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get(),
                                            auto_grad1.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get(),
                                            auto_grad1.get()) == false);
}

TEST(EagerUtils, PassStopGradient) {
  auto auto_grad0 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad1 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad2 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad3 = std::make_shared<egr::AutogradMeta>();
  CHECK_EQ(auto_grad0->NumericStopGradient(), -1);
  VLOG(6) << "Test PassStopGradient";
  egr::EagerUtils::PassStopGradient(false, auto_grad0.get());
  CHECK(auto_grad0->StopGradient() == false);
  egr::EagerUtils::PassStopGradient(true, auto_grad0.get(), auto_grad1.get(),
                                    auto_grad2.get(), auto_grad3.get());
163
  CHECK(auto_grad0->StopGradient() == false);
164 165 166 167 168
  CHECK(auto_grad1->StopGradient() == true);
  CHECK(auto_grad2->StopGradient() == true);
  CHECK(auto_grad3->StopGradient() == true);
}

169
TEST(EagerUtils, TrySyncToVar) {
170
  paddle::framework::DDim ddim = phi::make_ddim({2, 4, 4, 4});
171
  auto tensor = CreateTestCPUTensor(5.0f, ddim);
172
  std::vector<std::shared_ptr<egr::EagerVariable>> var_bases = {
173
      egr::EagerUtils::TrySyncToVar(tensor)};
174 175 176 177 178 179 180 181 182 183 184 185 186

  paddle::framework::Variable* var = var_bases[0]->MutableVar();
  const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

  const float* ptr = framework_tensor.data<float>();
  VLOG(6) << "Check Value for SyncToVarsSingle";
  CHECK_EQ(framework_tensor.numel(), tensor.numel());

  for (int i = 0; i < framework_tensor.numel(); i++) {
    CHECK_EQ(ptr[i], 5.0f);
  }
}

187
TEST(EagerUtils, TrySyncToVars) {
188
  paddle::framework::DDim ddim = phi::make_ddim({2, 4, 4, 4});
189 190
  std::vector<paddle::experimental::Tensor> tensors = {
      CreateTestCPUTensor(1.0f, ddim), CreateTestCPUTensor(2.0f, ddim)};
191

192
  std::vector<std::shared_ptr<egr::EagerVariable>> var_bases =
193
      egr::EagerUtils::TrySyncToVars(tensors);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

  {
    paddle::framework::Variable* var = var_bases[0]->MutableVar();
    const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

    const float* ptr = framework_tensor.data<float>();
    CHECK_EQ(framework_tensor.numel(), tensors[0].numel());

    for (int i = 0; i < framework_tensor.numel(); i++) {
      CHECK_EQ(ptr[i], 1.0);
    }
  }

  {
    paddle::framework::Variable* var = var_bases[1]->MutableVar();
    const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

    const float* ptr = framework_tensor.data<float>();
    VLOG(6) << "Check Value for SyncToVarsMultiple";
    CHECK_EQ(framework_tensor.numel(), tensors[0].numel());

    for (int i = 0; i < framework_tensor.numel(); i++) {
      CHECK_EQ(ptr[i], 2.0);
    }
  }
}

221 222
TEST(EagerUtils, CreateVars) {
  VLOG(6) << "Check CreateVars";
223
  std::vector<std::shared_ptr<egr::EagerVariable>> outs =
224
      egr::EagerUtils::CreateVars(2);
225
  CHECK_EQ(outs.size(), size_t(2));
226
  CHECK(outs[0]->Var().IsInitialized() == false);
227
}
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
TEST(EagerUtils, GetGradAccumulationNode) {
  VLOG(6) << "Check GetGradAccumulationNode";
  paddle::experimental::Tensor t0("test_tensor");
  ASSERT_EQ(egr::EagerUtils::GetGradAccumulationNode(t0), nullptr);
  auto autograd_ptr0 = egr::EagerUtils::autograd_meta(&t0);
  autograd_ptr0->SetStopGradient(true);
  ASSERT_EQ(egr::EagerUtils::GetGradAccumulationNode(t0), nullptr);
  autograd_ptr0->SetStopGradient(false);
  auto res = std::dynamic_pointer_cast<egr::GradNodeAccumulation>(
      egr::EagerUtils::GetGradAccumulationNode(t0));
  ASSERT_TRUE(res != nullptr);
  auto res2 = egr::EagerUtils::GetGradAccumulationNode(t0);
  ASSERT_EQ(res2.get(), res.get());
  autograd_ptr0->SetStopGradient(true);
  auto res3 = egr::EagerUtils::GetGradAccumulationNode(t0);
  ASSERT_EQ(res3, nullptr);
  autograd_ptr0->SetStopGradient(false);
  autograd_ptr0->SetGradNode(
      std::make_shared<eager_test::GradTestNode>(1, 2.0, 3));
  ASSERT_ANY_THROW(egr::EagerUtils::GetGradAccumulationNode(t0));
}

W
wanghuancoder 已提交
251
TEST(EagerUtils, FillZeroForEmptyOptionalGradInput) {
252 253 254 255 256
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       egr::kSlotSmallVectorSize>
      grads = {std::vector<paddle::experimental::Tensor>(1)};
  paddle::small_vector<std::vector<GradSlotMeta>, egr::kSlotSmallVectorSize>
      slot_metas = {std::vector<GradSlotMeta>(1)};
257 258 259 260 261 262 263

  phi::DenseTensorMeta tensor_meta;
  tensor_meta.dtype = paddle::experimental::DataType::FLOAT32;
  tensor_meta.dims = {2, 4};
  slot_metas[0][0].SetTensorMeta(tensor_meta);
  slot_metas[0][0].SetPlace(phi::CPUPlace());

W
wanghuancoder 已提交
264
  EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[0], slot_metas[0]);
265 266 267
  eager_test::CompareTensorWithValue<float>(grads[0][0], 0.0);
}

268
}  // namespace egr