optimizer.py 301.9 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40 41 42 43 44 45 46 47
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from .clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
    ClipGradByGlobalNorm,
)
48 49 50
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
51
from .dygraph import base as imperative_base
52
from .dygraph import no_grad
53 54 55 56
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
57 58 59
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
60
from functools import cmp_to_key
61
from .wrapped_decorator import signature_safe_contextmanager
62
import warnings
63
from paddle import _C_ops, _legacy_C_ops
64 65 66 67 68
from ..fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _current_expected_place,
)
69

70
__all__ = [
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
98
]
Q
Qiao Longfei 已提交
99 100


101
class Optimizer:
Q
Qiao Longfei 已提交
102 103 104
    """Optimizer Base class.

    Define the common interface of an optimizer.
105 106
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
107 108
    """

109
    @imperative_base.no_grad
110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
120 121
        """
        Args:
122 123
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
124 125
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
126
        # Because of the loop import, so place it in the function body
127
        from paddle.optimizer.lr import LRScheduler
128 129 130 131

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
132
        self._name = name
J
Jiabin Yang 已提交
133
        if framework._non_static_mode():
134 135 136
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
137
                raise TypeError(
138
                    "learning rate should be float or LRScheduler, got %s here"
139 140
                    % type(learning_rate)
                )
141
            if self._parameter_list is None:
142 143 144
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
145 146 147 148 149 150
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
151 152
                            % regularization.__str__()
                        )
153
                        break
M
minqiyang 已提交
154
        else:
155 156 157
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
158
                raise TypeError(
159
                    "learning rate should be float or LRScheduler, got %s here"
160 161
                    % type(learning_rate)
                )
M
minqiyang 已提交
162

163 164 165 166 167
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
168
        self.regularization = regularization
169
        self._grad_clip = grad_clip
170
        self._learning_rate = learning_rate
171 172
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
173

D
dzhwinter 已提交
174
        self._dtype = None
L
Leo Chen 已提交
175 176 177 178
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

179
        # each program should have a independent learning rate
180
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
181
        self._learning_rate_map = dict()
182
        if isinstance(self._learning_rate, framework.Variable):
183
            self._learning_rate_map[
184 185
                framework.default_main_program()
            ] = self._learning_rate
186 187 188 189 190
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
191 192
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
193
        self.helper = LayerHelper(self.__class__.__name__)
194
        self._opti_name_list = []
H
hong 已提交
195
        self._accumulators_holder = {}
196
        self._param_device_map = dict()
197 198
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
199
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
200 201
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
202 203 204 205

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
206 207
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
208 209 210

        Args: None
        Return:
T
tianshuo78520a 已提交
211
            state_dict(dict) : dict contains all the variable used by optimizer
212

H
hong 已提交
213 214 215 216
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
217 218 219 220 221 222

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
223 224

        '''
225
        from paddle.optimizer.lr import LRScheduler
226

H
hong 已提交
227 228 229 230
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
231 232
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
233
        # global step if use lr decay
234
        if isinstance(self._learning_rate, LRScheduler):
235 236
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
237
        if isinstance(self._learning_rate, LearningRateDecay):
238 239 240 241
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
242 243 244
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
245

246 247 248
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
249

250
                state_dict['global_step'] = var_temp
H
hong 已提交
251 252 253
        return state_dict

    @framework.dygraph_only
254
    def set_state_dict(self, state_dict):
H
hong 已提交
255
        '''
T
tianshuo78520a 已提交
256
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
257

258
        Args:
H
hong 已提交
259 260 261
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
262

H
hong 已提交
263 264
        Examples:
            .. code-block:: python
265

266 267
                import paddle
                import paddle.fluid as fluid
268 269 270

                paddle.disable_static()

271
                emb = paddle.nn.Embedding(10, 10)
272

273
                state_dict = emb.state_dict()
274
                fluid.save_dygraph(state_dict, "paddle_dy")
275

276
                scheduler = paddle.optimizer.lr.NoamDecay(
277 278 279 280
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
281
                state_dict = adam.state_dict()
282
                fluid.save_dygraph(state_dict, "paddle_dy")
283

284
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
285
        '''
286
        from paddle.optimizer.lr import LRScheduler
287

288
        if isinstance(self._learning_rate, LRScheduler):
289
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
290 291

        if isinstance(self._learning_rate, LearningRateDecay):
292 293 294
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
295 296 297
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
298 299 300 301 302
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
303 304 305 306 307
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
308 309 310

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
311 312 313 314 315
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
316 317 318 319
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
320 321
                        type(global_step),
                    )
H
hong 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
335 336 337
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
338

339 340 341 342 343
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
344

345 346 347 348 349
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
350 351 352

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
353 354 355
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
356 357 358
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
359
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
360

361
        for k, v in self._global_accumulators.items():
362 363 364
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
365
            _load_state_para(state_dict, v)
366

367 368 369
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

370 371
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
372

373 374 375 376 377 378 379 380 381
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
382
    def _create_global_learning_rate(self):
383
        from paddle.optimizer.lr import LRScheduler
384

385
        if isinstance(self._learning_rate, LRScheduler):
386 387 388 389 390 391 392 393 394 395
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
396 397
                    dtype='float32' if self._dtype is None else self._dtype,
                )
398 399 400
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
401
                self._learning_rate_map[
402 403
                    framework.default_main_program()
                ] = lr_var
404 405 406

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
407 408
                lr_var, initializer=Constant(value=lr_value)
            )
409 410
            return

411 412 413
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
414 415 416 417 418
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
419 420
                    self._learning_rate_map[
                        framework.default_main_program()
421
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
422 423 424 425
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
426 427
                        persistable=True,
                    )
428
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
429
            elif isinstance(self._learning_rate, LearningRateDecay):
430
                self._learning_rate_map[
431 432
                    framework.default_main_program()
                ] = self._learning_rate()
433
            else:
Q
qiaolongfei 已提交
434
                raise TypeError(
435 436
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
437
        else:
438 439 440 441
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
442 443 444 445 446 447
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
448

449
            # create learning rate in the current main program
450
            self._learning_rate_map[
451
                framework.default_main_program()
452
            ] = paddle.static.create_global_var(
453 454 455 456 457 458
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
459

460 461 462 463
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
464

465 466 467 468 469 470 471 472
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
473

474 475 476
        Examples:
            .. code-block:: python

477
                import paddle
478
                import paddle.fluid as fluid
479
                import paddle
480

481
                with fluid.dygraph.guard():
482
                    linear = paddle.nn.Linear(10, 10)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
501
                    lr_var = paddle.static.create_global_var(
502 503 504 505 506 507 508 509 510 511 512 513 514
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
515 516
                % (type(value))
            )
517 518 519 520 521 522 523 524
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
525 526
                if in_dygraph_mode():
                    place = _current_expected_place()
527 528 529 530 531 532 533
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
534 535

                elif _in_legacy_dygraph():
536 537 538 539 540 541 542 543 544
                    _legacy_C_ops.fill_constant(
                        current_lr,
                        'value',
                        float(value),
                        'dtype',
                        current_lr.dtype,
                        'shape',
                        list(current_lr.shape),
                    )
545
                else:
546 547 548 549 550 551 552 553 554 555 556 557 558
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
559
        else:
560 561 562
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
563 564
            self._learning_rate_map[framework.default_main_program()] = value

565 566 567
    @framework.dygraph_only
    def current_step_lr(self):
        """
568
        :api_attr: imperative
569

570 571 572 573 574 575 576 577 578 579 580
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
581
                import paddle
582 583 584 585 586 587 588 589 590 591 592

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
593
                    linear = paddle.nn.Linear(10, 10)
594 595
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
596
                    loss = paddle.mean(out)
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
615
        if isinstance(current_lr, framework.Variable):
616 617 618 619
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
620 621 622
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
623 624 625 626 627 628 629
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
630
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
631 632 633 634
        """
        get global decayed learning rate
        :return:
        """
635 636
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
637
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
638

Q
Qiao Longfei 已提交
639
    def _append_optimize_op(self, block, param_and_grad):
640
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
641 642
        raise NotImplementedError()

643 644 645 646
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
647 648
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
649
        else:
W
Wu Yi 已提交
650
            if param_lr == 1.0:
Y
yuyang18 已提交
651
                return self._global_learning_rate()
W
Wu Yi 已提交
652
            else:
X
Xin Pan 已提交
653
                with default_main_program()._lr_schedule_guard(
654 655
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
656
                    return self._global_learning_rate() * param_lr
657 658 659 660 661 662 663

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
664
        """
665 666
        pass

667
    def _finish_update(self, block, parameters_and_grads):
668 669 670 671 672 673 674 675
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
676
            None
677 678 679
        """
        pass

680 681 682 683 684 685 686 687 688 689
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
690 691 692 693 694 695 696 697 698
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
699 700
        if self._name is not None:
            name = self._name + "_" + name
701 702 703 704
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
705
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
706
                return self._accumulators[name][param.name]
707 708
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
709 710 711
                    name, param.name
                )
            )
712
        if shape is None:
713
            shape = param.shape
Q
Qiao Longfei 已提交
714
        assert isinstance(self.helper, LayerHelper)
715 716 717 718 719

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
720
        var = self.helper.create_global_variable(
721
            name=var_name,
Q
Qiao Longfei 已提交
722
            persistable=True,
F
fengjiayi 已提交
723
            dtype=dtype or param.dtype,
724
            type=core.VarDesc.VarType.LOD_TENSOR
725 726
            if framework._non_static_mode()
            else (param.type if type is None else type),
H
hong 已提交
727
            shape=shape,
728 729
            belong_to_optimizer=True,
        )
730 731 732 733
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
734 735
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
736

J
Jiabin Yang 已提交
737
        if framework._non_static_mode():
H
hong 已提交
738
            if len(self._accumulators_holder) > 0:
739 740 741 742 743
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
744 745
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
746
        self._accumulators[name][param.name] = var
747
        return var
748

749 750 751 752 753 754 755 756 757
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
758 759 760 761 762 763 764 765 766 767 768 769 770
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
771
        if name in self._global_accumulators:
J
Jiabin Yang 已提交
772
            if framework._non_static_mode():
773 774
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
775
        if shape is None:
776 777 778 779 780 781 782 783 784 785 786 787 788
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
789 790
            belong_to_optimizer=True,
        )
791 792 793 794
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
795 796
                var, initializer=Constant(value=float(fill_value))
            )
797

J
Jiabin Yang 已提交
798
        if framework._non_static_mode():
799
            if len(self._accumulators_holder) > 0:
800 801 802 803 804
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
805 806 807 808 809
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

810 811 812 813 814 815 816 817
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
818
            accumulator variable
819
        """
W
whs 已提交
820 821
        if self._name is not None:
            name = self._name + "_" + name
822 823 824 825
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
826 827
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
828 829 830
                    name, param.name
                )
            )
831 832
        return self._accumulators[name][param.name]

833 834 835 836 837 838 839 840 841 842 843
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
844
        if name not in self._global_accumulators:
845 846 847
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

848 849 850 851 852
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
853 854
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
855 856 857 858 859
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
860 861
                            device_attr_name
                        )
862
                        break
863 864 865 866 867 868 869

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

870
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
871 872 873
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
874
          parameters_and_grads(list(tuple(Variable, Variable))):
875
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
876 877

        Returns:
878
          return_op_list: a list of operators that will complete one step of
879 880 881
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
882
        """
883 884 885 886 887
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
888
        # for parameters and extend _finish_update method to add custom ops.
889

890
        # Allways called under program_guard use global block as loss block
891 892 893
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

894
        global_block = framework.default_main_program().global_block()
895 896 897
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
898 899 900
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
901
            target_block = framework.default_main_program().blocks[
902 903
                current_block.backward_block_idx
            ]
904 905

        start = len(target_block.ops)
906

907
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
908
        self._create_accumulators(
909 910
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
911 912
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
913
        if framework._non_static_mode():
914 915 916
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
917 918
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
919 920 921 922 923
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
924 925
                    param_and_grad
                ), name_scope("optimizer"):
926
                    if param_and_grad[0].trainable is True:
927
                        device = self._get_device_for_param(
928 929
                            param_and_grad[0].name
                        )
930 931
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
932 933
                                target_block, param_and_grad
                            )
934 935 936

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
937
        self._finish_update(target_block, parameters_and_grads)
938

939 940
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
941 942

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
943 944 945 946 947 948 949 950 951
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
952 953
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
954 955 956 957 958 959 960 961
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
962 963
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
964 965 966 967 968 969
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
970
            param_and_grad = [table_param, table_grad]
971 972 973
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
974 975 976 977 978 979 980
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
981
                        "LearningRate": self._create_param_lr(param_and_grad),
982
                    },
983 984
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
985 986
        return new_param_grads, (table_param, table_grad), sgd_op

987 988 989 990 991 992 993 994
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
995
        """
996
        The first part of ``minimize``, do auto-diff to append backward operations for
997 998 999
        the current program.

        Args:
1000 1001 1002 1003
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1004
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1005 1006
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1007
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1008 1009 1010
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1011

1012
        Return:
1013 1014
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1015

1016
        Examples:
1017
            See examples in ``apply_gradients``.
1018
        """
1019
        act_no_grad_set = None
J
Jiabin Yang 已提交
1020
        if framework._non_static_mode():
1021
            pass
L
Leo Chen 已提交
1022 1023
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1024

L
Leo Chen 已提交
1025 1026 1027 1028
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1029
        if framework._non_static_mode():
1030 1031 1032
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1033

C
chengduo 已提交
1034
            params_grads = []
1035
            for param in parameter_list:
C
chengduo 已提交
1036 1037
                if not param.trainable:
                    continue
1038
                if param._grad_ivar() is not None:
C
chengduo 已提交
1039
                    # create gradient variable
1040
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1041
                    params_grads.append((param, grad_var))
1042
        else:
C
chengduo 已提交
1043 1044 1045
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1046
                assert isinstance(callbacks, list)
C
chengduo 已提交
1047
            program = loss.block.program
1048 1049
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1050
                "Maybe that you should call paddle.mean to process the current loss.".format(
1051 1052 1053 1054 1055 1056
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1057
            with program_guard(program, startup_program):
1058 1059 1060
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1061
        return params_grads
1062

1063
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1064
        """Create and add backward regularization Operators
1065

1066 1067 1068
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1069
        if grad is None or (
1070 1071 1072 1073 1074 1075
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
1086
        if framework._non_static_mode():
1087
            return _legacy_C_ops.sum([grad, regularization_term])
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1100 1101
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1102 1103 1104

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1105
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1106 1107 1108

        return new_grad

1109 1110 1111
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1112
        r"""Create and add backward regularization Operators
1113

1114 1115 1116 1117
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1118

1119 1120 1121 1122 1123
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1124

1125 1126 1127
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1128

1129 1130 1131 1132
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1133
        if framework._non_static_mode():
1134
            for param, grad in parameters_and_grads:
1135
                new_grad = self._create_regularization_of_grad(
1136 1137
                    param, grad, regularization
                )
1138 1139 1140 1141 1142
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1143 1144 1145 1146 1147
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1148 1149 1150 1151
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1152 1153
                            % regularization.__str__()
                        )
1154 1155
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1156 1157
                            param, grad, regularization
                        )
1158 1159 1160
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1161 1162 1163 1164 1165 1166 1167
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1168 1169 1170 1171
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1172 1173
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1174 1175
                    "the regularizer is set".format(p.name)
                )
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1190 1191
            belong_to_optimizer=True,
        )
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1202 1203
            belong_to_optimizer=True,
        )
1204 1205

        with program_guard(default_main_program()):
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1235

1236
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1237
        # so the shape of flatten_param and flatten_grad will be inferred.
1238 1239 1240 1241 1242 1243
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1244 1245 1246

        return [(flatten_param, flatten_grad)]

1247 1248 1249 1250 1251 1252 1253
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1254

1255 1256
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1257

1258 1259 1260
        Examples:
            .. code-block:: python

1261
                import paddle.fluid as fluid
1262 1263 1264 1265 1266 1267 1268 1269 1270
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1271 1272
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1273
            if self._grad_clip is None or isinstance(
1274 1275
                self._grad_clip, ClipGradByGlobalNorm
            ):
1276 1277
                params_grads = self.flatten_param_grads(params_grads)

1278
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1279 1280 1281 1282
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1283 1284

        # Add regularization if any
1285 1286 1287
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1288 1289 1290 1291

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1304
        if framework._non_static_mode():
1305 1306 1307 1308
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1309 1310
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1311
                params_grads = self.append_regularization_ops(
1312 1313
                    params_grads, self.regularization
                )
C
chengduo 已提交
1314 1315 1316 1317 1318 1319 1320
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1321
    def _get_no_grad_set(self, loss, no_grad_set=None):
1322
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1323 1324
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1325 1326
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1327 1328 1329 1330 1331
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1332 1333 1334 1335
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1336 1337

        If not, new gradient will accumulat on previous gradient.
1338

1339 1340
        Returns:
            None
1341

1342 1343 1344 1345
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1346
                import paddle
1347 1348 1349 1350 1351
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1352
                    linear = paddle.nn.Linear(13, 5)
1353
                    # This can be any optimizer supported by dygraph.
1354
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1366
    @imperative_base.no_grad
1367 1368 1369
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1370
        """
1371
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1372

1373
        Args:
1374 1375 1376 1377
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1378
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1379 1380
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1381
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1382
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1383

1384
        Returns:
1385 1386 1387
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1388 1389
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1390
            ``fetch_list`` before run, see details in ``Executor``.
1391 1392 1393

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1394
        """
C
chengduo 已提交
1395
        assert isinstance(loss, Variable), "The loss should be an Variable."
1396

1397 1398 1399
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1400

1401 1402 1403 1404 1405 1406
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1407

1408 1409 1410
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1411

Q
Qiao Longfei 已提交
1412
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1413 1414 1415


class SGDOptimizer(Optimizer):
1416
    r"""
Q
qiaolongfei 已提交
1417 1418 1419 1420 1421 1422
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1423 1424 1425
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1426
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1427 1428
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1429 1430 1431 1432 1433
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1434 1435 1436
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1437
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1438 1439
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1440 1441 1442 1443

    Examples:
        .. code-block:: python

1444 1445 1446 1447
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1448
            paddle.enable_static()
1449 1450 1451 1452 1453 1454
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
1455
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1456
                avg_cost = paddle.mean(cost)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1470 1471
    """

1472 1473 1474 1475 1476 1477 1478 1479 1480
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1481
        assert learning_rate is not None
1482
        super().__init__(
1483 1484 1485 1486 1487 1488
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1489
        self.type = "sgd"
1490
        self._use_mkldnn = False
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1502
            var = paddle.static.create_global_var(
1503 1504 1505 1506 1507 1508
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1509
            block = self.helper.startup_program.global_block()
1510 1511 1512 1513 1514 1515 1516 1517 1518
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1532 1533 1534 1535
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1536 1537 1538 1539
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1540

1541
    @no_grad
1542
    def _append_optimize_op(self, block, param_and_grad):
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1553

1554
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1555
        if in_dygraph_mode():
1556 1557 1558 1559 1560 1561 1562
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1563 1564
            return None
        if _in_legacy_dygraph():
1565 1566 1567 1568 1569 1570 1571 1572
            _legacy_C_ops.sgd(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                param_and_grad[0],
                master_weight,
            )
1573
            return None
1574

1575
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1576
        # create the optimize op
1577 1578 1579
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
1580
            "LearningRate": lr,
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1591 1592 1593 1594 1595 1596 1597
        sgd_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
Q
Qiao Longfei 已提交
1598 1599

        return sgd_op
1600 1601 1602


class MomentumOptimizer(Optimizer):
1603
    r"""
Q
qiaolongfei 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1617
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1618 1619 1620

        & else:

Q
qiaolongfei 已提交
1621
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1622

1623 1624 1625 1626
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1627
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1628 1629
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1630
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1631 1632 1633 1634 1635
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1636 1637 1638
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1639
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1640 1641
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1642 1643 1644 1645

    Examples:
        .. code-block:: python

1646 1647 1648 1649
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1650
            paddle.enable_static()
1651 1652 1653 1654 1655 1656
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
1657
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1658
                avg_cost = paddle.mean(cost)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1672 1673 1674
    """
    _velocity_acc_str = "velocity"

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1685 1686
        assert learning_rate is not None
        assert momentum is not None
1687
        super().__init__(
1688 1689 1690 1691 1692 1693
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1694 1695
        self.type = "momentum"
        self._momentum = momentum
1696
        self._use_nesterov = bool(use_nesterov)
1697 1698 1699 1700 1701

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1702
            self._add_accumulator(self._velocity_acc_str, p)
1703 1704 1705 1706

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1707 1708 1709
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1710
        lr = self._create_param_lr(param_and_grad)
1711
        master_weight = None
J
Jiabin Yang 已提交
1712
        if framework._non_static_mode():
1713
            _, _, _ = _legacy_C_ops.momentum(
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1727
            return None
1728

1729
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1730 1731 1732 1733
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1734
            "LearningRate": [lr],
1735 1736 1737 1738
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
1739
            "VelocityOut": [velocity_acc],
1740
        }
1741
        # create the momentum optimize op
1742 1743 1744 1745 1746 1747 1748
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1749 1750

        return momentum_op
1751 1752


1753
class LarsMomentumOptimizer(Optimizer):
1754
    r"""
1755 1756 1757 1758 1759 1760 1761 1762 1763
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1764
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1765 1766 1767

        & param = param - velocity

1768 1769 1770 1771 1772 1773
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1774
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1775 1776
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1777 1778 1779 1780 1781
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1782 1783 1784
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1785
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1786 1787
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1788 1789
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1790 1791 1792
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1793

1794 1795 1796
    Examples:
        .. code-block:: python

1797
            import paddle
1798 1799 1800
            import paddle.fluid as fluid
            import numpy as np

1801
            paddle.enable_static()
1802 1803 1804 1805
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
1806
            out = paddle.sum(out)
1807 1808 1809 1810 1811 1812 1813 1814
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1815 1816 1817
    """
    _velocity_acc_str = "velocity"

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1833 1834
        assert learning_rate is not None
        assert momentum is not None
1835
        super().__init__(
1836 1837 1838 1839 1840 1841
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1842 1843 1844 1845
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1846 1847 1848 1849 1850
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1851 1852 1853 1854 1855
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1856 1857 1858 1859
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1860

1861 1862
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
1863
            var = paddle.static.create_global_var(
1864 1865 1866 1867 1868 1869
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1870
            block = self.helper.startup_program.global_block()
1871 1872 1873 1874 1875 1876 1877 1878 1879
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1880
            self._master_weights[param.name] = var
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
1893 1894 1895 1896 1897 1898
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
1899
        target_name = target_param.name
1900 1901 1902 1903
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
1904 1905
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
1906 1907 1908
                    name, target_name
                )
            )
1909
        return self._accumulators[name][target_name]
1910 1911 1912 1913 1914

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1915 1916 1917 1918
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1919 1920 1921 1922
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1923 1924 1925 1926
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1927 1928 1929 1930
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1931 1932 1933 1934 1935 1936 1937 1938
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1939 1940 1941
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1942 1943
        lr = self._create_param_lr(param_and_grad)

1944 1945 1946 1947 1948 1949 1950 1951 1952
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1953 1954 1955

        attrs = {
            "mu": self._momentum,
1956
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1957
            "lars_weight_decay": [_lars_weight_decay],
1958
            "multi_precision": find_master,
L
limingshu 已提交
1959
            "epsilon": self._epsilon,
1960
            "rescale_grad": self._rescale_grad,
1961 1962 1963 1964 1965 1966
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1967
            "LearningRate": lr,
1968 1969 1970 1971 1972 1973 1974 1975
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
1976
        if framework._non_static_mode():
1977
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1997 1998
        else:
            # create the momentum optimize op
1999 2000 2001 2002 2003 2004 2005
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
2006

2007
            return momentum_op
2008 2009


2010
class AdagradOptimizer(Optimizer):
2011
    r"""
2012 2013
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2014

2015
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2016 2017 2018 2019 2020 2021 2022

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2023 2024 2025 2026 2027 2028
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2029 2030 2031
    for numerical stability to avoid the division by zero error.

    Args:
2032 2033 2034 2035
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2036
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2037 2038
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2039 2040 2041 2042 2043
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2044 2045 2046
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2047
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2048 2049 2050 2051 2052
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2053 2054 2055 2056

    Examples:
        .. code-block:: python

2057
            import paddle
2058
            import numpy as np
2059
            import paddle.fluid as fluid
2060

2061
            paddle.enable_static()
2062
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2063
            inp = fluid.data(name="inp", shape=[2, 2])
2064
            out = fluid.layers.fc(inp, size=3)
2065
            out = paddle.sum(out)
2066
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2067 2068 2069 2070 2071 2072 2073
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2074 2075 2076
    """
    _moment_acc_str = "moment"

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2087 2088
        assert learning_rate is not None
        assert epsilon is not None
2089
        super().__init__(
2090 2091 2092 2093 2094 2095
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2096 2097
        self.type = "adagrad"
        self._epsilon = epsilon
2098
        self.initial_accumulator_value = initial_accumulator_value
2099 2100 2101 2102 2103

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2104 2105 2106 2107 2108
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2109 2110 2111 2112

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2113 2114 2115
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2116
        if in_dygraph_mode():
2117 2118 2119 2120 2121 2122 2123
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2124 2125
            return None
        elif _in_legacy_dygraph():
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
            _legacy_C_ops.adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
            )
C
caozhou 已提交
2136
            return None
2137 2138 2139 2140 2141 2142 2143 2144
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2145
                    "LearningRate": self._create_param_lr(param_and_grad),
2146 2147 2148
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2149
                    "MomentOut": moment_acc,
2150 2151
                },
                attrs={"epsilon": self._epsilon},
2152 2153
                stop_gradient=True,
            )
2154

2155
            return adagrad_op
2156 2157 2158


class AdamOptimizer(Optimizer):
2159
    r"""
T
tianshuo78520a 已提交
2160
    The Adam optimizer uses an optimization described at the end
2161 2162 2163
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2164

2165
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2180 2181
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2182
    Args:
2183 2184
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2185 2186
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2187
            The default value is 0.9.
2188 2189
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2190
            The default value is 0.999.
2191 2192
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2193
            The default value is 1e-08.
H
hong 已提交
2194
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2195 2196
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2197 2198 2199 2200 2201
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2202 2203 2204
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2205
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2216
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2217
            for whole model instead of creating beta_pow for each parameter. Default is false.
2218 2219
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2220
            use same align_size as allocator.
Q
qiaolongfei 已提交
2221 2222 2223 2224

    Examples:
        .. code-block:: python

2225 2226 2227
            import paddle
            import paddle.fluid as fluid

2228
            paddle.enable_static()
2229 2230 2231
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2232 2233
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2234
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
2235
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2236
                avg_cost = paddle.mean(cost)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2249

2250 2251 2252 2253 2254 2255 2256
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2257
            paddle.enable_static()
2258 2259 2260 2261 2262 2263
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
2264
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2265
                avg_cost = paddle.mean(cost)
2266 2267

                # define beta decay variable
2268
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2269 2270
                    global_step = lr_scheduler._decay_step_counter()

2271
                    beta1 = paddle.static.create_global_var(
2272 2273 2274 2275 2276 2277
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2278
                    beta2 = paddle.static.create_global_var(
2279 2280 2281 2282 2283 2284
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2285
                    epsilon = paddle.static.create_global_var(
2286 2287 2288 2289 2290 2291
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2292 2293 2294 2295 2296 2297 2298

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2299
                    return beta1, beta2, epsilon
2300

2301
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2302 2303
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2304
                                                    beta1=beta1,
2305 2306
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2317 2318 2319
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2320 2321
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2338 2339 2340 2341
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2342
        super().__init__(
2343 2344 2345 2346 2347 2348 2349 2350
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2351 2352 2353 2354
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2355
        self._lazy_mode = lazy_mode
2356
        self._use_global_beta_pow = use_global_beta_pow
2357 2358 2359 2360 2361 2362

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2363 2364
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2365 2366 2367 2368
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2369 2370 2371
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2372
                    shape=[1],
2373 2374 2375
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2376 2377 2378
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2379 2380 2381
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2382
                    shape=[1],
2383 2384 2385
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2386 2387
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2388
                name=self._beta1_pow_acc_str,
2389 2390 2391
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2392
                shape=[1],
2393 2394 2395
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2396
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2397
                name=self._beta2_pow_acc_str,
2398 2399 2400
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2401
                shape=[1],
2402 2403 2404
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2405 2406 2407 2408

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2409 2410 2411 2412 2413 2414
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2415 2416
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2417 2418
                self._beta1_pow_acc_str
            )
2419
            beta2_pow_acc = self._get_global_accumulator(
2420 2421
                self._beta2_pow_acc_str
            )
2422
        else:
2423 2424 2425 2426 2427 2428
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2429
        lr = self._create_param_lr(param_and_grad)
2430
        # create the adam optimize op
2431

J
Jiabin Yang 已提交
2432
        if framework._non_static_mode():
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2443
            master_weight = None
2444
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2472 2473 2474

            return None

2475
        inputs = {
2476 2477
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2478
            "LearningRate": [lr],
2479 2480 2481
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2482
            "Beta2Pow": [beta2_pow_acc],
2483
        }
2484 2485 2486 2487 2488 2489 2490

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2491
        outputs = {
2492 2493 2494 2495 2496
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2497 2498 2499
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2500
            "min_row_size_to_use_multithread": 1000,
2501
            'use_global_beta_pow': self._use_global_beta_pow,
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2512 2513 2514 2515
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2516

2517 2518 2519 2520 2521 2522 2523
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2524 2525 2526

        return adam_op

2527
    def _finish_update(self, block, parameters_and_grads):
2528
        r"""Update beta1_pow and beta2_pow accumulator"""
2529 2530 2531
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2532 2533
                self._beta1_pow_acc_str
            )
2534
            beta2_pow_acc = self._get_global_accumulator(
2535 2536
                self._beta2_pow_acc_str
            )
2537 2538 2539

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2540
                outputs = {"Out": beta1_pow_acc}
2541 2542
                attrs = {}
                if isinstance(self._beta1, Variable):
2543 2544
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2545 2546 2547 2548 2549 2550 2551
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2552 2553
                else:
                    attrs['scale'] = self._beta1
2554 2555 2556 2557 2558 2559 2560
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2561 2562

                inputs = {"X": beta2_pow_acc}
2563
                outputs = {"Out": beta2_pow_acc}
2564 2565
                attrs = {}
                if isinstance(self._beta2, Variable):
2566 2567
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2568 2569 2570 2571 2572 2573 2574
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2575 2576
                else:
                    attrs['scale'] = self._beta2
2577 2578 2579 2580 2581 2582 2583
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2584

2585 2586

class AdamaxOptimizer(Optimizer):
2587
    r"""
2588
    The Adamax optimizer is implemented based on the Adamax Optimization
2589 2590 2591
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2592

2593
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2607
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2621
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2622 2623
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2624 2625 2626 2627 2628
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2629 2630 2631
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2632
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2633 2634 2635 2636 2637 2638
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2639

2640 2641 2642 2643 2644
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2645 2646
          import paddle
          paddle.enable_static()
2647 2648 2649 2650 2651 2652 2653 2654

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2655
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2656
              hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
2657
              loss = paddle.mean(hidden)
2658
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2659 2660 2661 2662 2663 2664 2665 2666 2667
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2668 2669 2670
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2671
    _beta1_pow_acc_str = "beta1_pow_acc"
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2684 2685 2686 2687
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2688
        super().__init__(
2689 2690 2691 2692 2693 2694
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2695 2696 2697 2698 2699 2700 2701 2702
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2703 2704
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2705 2706 2707 2708 2709 2710
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2711 2712 2713 2714 2715

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
2716 2717 2718 2719 2720 2721
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2722 2723

        if framework.in_dygraph_mode():
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
2735
        elif framework._in_legacy_dygraph():
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
            _legacy_C_ops.adamax(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                param_and_grad[0],
                moment,
                inf_norm,
                "beta1",
                self._beta1,
                "beta2",
                self._beta2,
                "epsilon",
                self._epsilon,
            )
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
2763
                    "Beta1Pow": beta1_pow_acc,
2764 2765 2766 2767
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
2768
                    "InfNormOut": inf_norm,
2769 2770 2771 2772
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
2773
                    "epsilon": self._epsilon,
2774
                },
2775 2776
                stop_gradient=True,
            )
2777

2778
            return adamax_op
2779

2780
    def _finish_update(self, block, parameters_and_grads):
2781
        """Update Beta1 Power accumulator"""
2782
        assert isinstance(block, framework.Block)
2783
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2784
            if grad is None or param.trainable is False:
2785
                continue
2786 2787 2788 2789 2790 2791
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
J
Jiabin Yang 已提交
2792
                if framework._non_static_mode():
2793
                    if framework.in_dygraph_mode():
2794 2795 2796
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
2797
                    else:
2798 2799 2800
                        tmp = _legacy_C_ops.scale(
                            beta1_pow_acc, "scale", self._beta1
                        )
2801 2802
                    beta1_pow_acc.copy_(tmp, False)
                else:
2803 2804 2805 2806 2807 2808 2809
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2810 2811


2812
class DpsgdOptimizer(Optimizer):
2813
    r"""
2814 2815 2816 2817 2818 2819 2820 2821
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2822 2823
          import paddle
          paddle.enable_static()
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
2834
              loss = paddle.mean(hidden)
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2852
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2853 2854
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2855 2856 2857 2858
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2859 2860 2861 2862 2863 2864 2865 2866
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2867 2868 2869 2870
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2871
        super().__init__(
2872 2873
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2874 2875 2876 2877
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2878 2879 2880 2881 2882 2883 2884
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2885 2886 2887 2888 2889

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2890
        if self._seed is None:
Z
zhongpu 已提交
2891 2892
            self._seed = 0

J
Jiabin Yang 已提交
2893
        if framework._non_static_mode():
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2908
        else:
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2925

2926
            return dpsgd_op
2927 2928


2929
class DecayedAdagradOptimizer(Optimizer):
2930
    r"""
2931 2932 2933
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2934

2935
    The parameter ``param_out`` update rule with gradient ``grad``:
2936 2937 2938 2939 2940 2941 2942

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2943 2944 2945 2946
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2947 2948 2949
    stability to avoid the division by zero error.

    Args:
2950 2951 2952 2953 2954
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2955
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2956 2957
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2958 2959 2960 2961 2962
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2963 2964 2965
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2966
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2967 2968 2969 2970 2971 2972
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2973 2974 2975 2976

    Examples:
        .. code-block:: python

2977 2978
            import paddle.fluid as fluid

2979 2980 2981 2982
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2983
            optimizer.minimize(cost)
2984 2985 2986
    """
    _moment_acc_str = "moment"

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2997 2998 2999 3000
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3001
        super().__init__(
3002 3003 3004 3005 3006 3007
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3021 3022 3023
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3024

J
Jiabin Yang 已提交
3025
        if framework._non_static_mode():
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3038 3039 3040 3041 3042 3043 3044 3045
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3046
                    "LearningRate": self._create_param_lr(param_and_grad),
3047 3048 3049
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3050
                    "MomentOut": moment_acc,
3051
                },
3052 3053 3054
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3055

3056
            return decayed_adagrad_op
3057 3058


3059
class AdadeltaOptimizer(Optimizer):
3060
    r"""
Z
Zeng Jinle 已提交
3061
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3062

Z
Zeng Jinle 已提交
3063
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3064 3065 3066
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3067

Z
Zeng Jinle 已提交
3068 3069
    .. math::

Z
Zeng Jinle 已提交
3070
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3071

Z
Zeng Jinle 已提交
3072
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3073

Z
Zeng Jinle 已提交
3074
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3075 3076

    Args:
Z
Zeng Jinle 已提交
3077 3078 3079
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3080
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3081 3082
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3083 3084 3085 3086 3087
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3088 3089 3090
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3091
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3092 3093 3094
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3095 3096 3097 3098

    Examples:
        .. code-block:: python

3099
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3100

3101
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3102 3103
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3104 3105
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3106

Z
Zeng Jinle 已提交
3107 3108 3109 3110
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3111
    """
3112

3113 3114 3115
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3126 3127 3128 3129 3130 3131
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3132
        super().__init__(
3133 3134 3135 3136 3137 3138
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3139 3140 3141 3142 3143
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3144 3145
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3146 3147 3148 3149 3150 3151

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3152 3153
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3154 3155

        avg_squared_grad_acc = self._get_accumulator(
3156 3157
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3158
        avg_squared_update_acc = self._get_accumulator(
3159 3160
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3161

3162
        if framework.in_dygraph_mode():
3163 3164 3165 3166 3167 3168 3169 3170
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3171
        elif framework._in_legacy_dygraph():
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
            _legacy_C_ops.adadelta(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                param_and_grad[0],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                "epsilon",
                self._epsilon,
                "rho",
                self._rho,
            )
3185 3186
        else:
            # Create the adadelta optimizer op
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3203

3204
            return adadelta_op
3205 3206


Q
qingqing01 已提交
3207
class RMSPropOptimizer(Optimizer):
3208
    r"""
Q
qingqing01 已提交
3209 3210 3211 3212 3213 3214 3215 3216
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3217
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3218 3219 3220 3221

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3222
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3223 3224 3225 3226 3227 3228

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3229
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3245 3246 3247 3248
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3249
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3250 3251 3252 3253 3254
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3255 3256 3257
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3258
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3259
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3260
        momentum(float): :math:`\\beta` in equation is the momentum term,
3261
            default is 0.0.
3262 3263 3264 3265
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3266
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3267 3268
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3269 3270 3271 3272 3273
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3274 3275 3276
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3277
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3278 3279
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3280 3281 3282 3283 3284 3285 3286

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3287 3288 3289 3290
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3291
            paddle.enable_static()
3292 3293 3294 3295 3296 3297
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
3298
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3299
                avg_cost = paddle.mean(cost)
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3313 3314 3315 3316
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3317
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3331
        super().__init__(
3332 3333 3334 3335 3336 3337
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3351
        self._centered = centered
Q
qingqing01 已提交
3352 3353 3354 3355 3356 3357 3358 3359

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3360
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3361 3362 3363 3364 3365

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3366 3367 3368 3369 3370 3371 3372 3373 3374
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3375
        if in_dygraph_mode():
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3388 3389
            return None
        elif _in_legacy_dygraph():
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
            _legacy_C_ops.rmsprop(
                param_and_grad[0],
                mean_square_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[1],
                momentum_acc,
                param_and_grad[0],
                momentum_acc,
                mean_square_acc,
                mean_grad_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._rho,
                "momentum",
                self._momentum,
                "centered",
                self._centered,
            )
C
caozhou 已提交
3409
            return None
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3425
                    "MeanGradOut": mean_grad_acc,
3426 3427 3428 3429 3430
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3431
                    "centered": self._centered,
3432
                },
3433 3434
                stop_gradient=True,
            )
Q
qingqing01 已提交
3435

3436
            return rmsprop_op
Q
qingqing01 已提交
3437 3438


Q
qiaolongfei 已提交
3439
class FtrlOptimizer(Optimizer):
3440
    r"""
Q
qiaolongfei 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3479 3480 3481 3482 3483
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3484
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3485 3486
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3487 3488 3489 3490 3491
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3492 3493 3494
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3495
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3496 3497
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3498 3499 3500 3501 3502 3503 3504

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3505 3506 3507 3508
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3509 3510
            paddle.enable_static()

3511 3512 3513 3514 3515 3516
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
3517
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3518
                avg_cost = paddle.mean(cost)
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3531

3532
    NOTE:
C
chengduo 已提交
3533
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3534 3535 3536 3537 3538
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3550
        super().__init__(
3551 3552 3553 3554 3555 3556
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3577 3578 3579 3580 3581 3582
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
J
Jiabin Yang 已提交
3583
        if framework._non_static_mode():
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3600 3601

        else:
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3623

3624
            return ftrl_op
Q
qiaolongfei 已提交
3625 3626


Y
Yibing Liu 已提交
3627
class LambOptimizer(AdamOptimizer):
3628
    r"""
Y
Yibing Liu 已提交
3629 3630
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3631 3632 3633
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3634
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3635 3636 3637 3638 3639

    The updating of parameters follows:

    ..  math::

3640
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3641

Y
Yibing Liu 已提交
3642
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3643

3644 3645 3646 3647
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3648
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3649

Y
Yibing Liu 已提交
3650
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3651 3652


3653
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3654 3655 3656
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3657 3658 3659 3660 3661 3662 3663 3664
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3665
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3666 3667
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3668 3669 3670 3671 3672
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3673 3674
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3675 3676 3677
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3678 3679
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3680
            Default None.
3681
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3682
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3683 3684 3685

    Examples:
        .. code-block:: python
3686

2
201716010711 已提交
3687
            import paddle
3688
            import paddle.fluid as fluid
2
201716010711 已提交
3689
            paddle.enable_static()
Y
Yibing Liu 已提交
3690

Y
Yibing Liu 已提交
3691
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3692
            hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
3693
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3694

Y
Yibing Liu 已提交
3695 3696 3697 3698 3699
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3700 3701 3702 3703 3704 3705 3706
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3720 3721 3722 3723 3724
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3725
        super().__init__(
3726 3727 3728 3729 3730 3731 3732 3733 3734
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3735 3736
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3737
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3738 3739 3740

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3741
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3760 3761 3762
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3763
        lr = self._create_param_lr(param_and_grad)
3764
        master_weight = None
J
Jiabin Yang 已提交
3765
        if framework._non_static_mode():
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3790
            return None
Y
Yibing Liu 已提交
3791

Y
Yibing Liu 已提交
3792
        # create the lamb optimize op
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3819 3820 3821 3822

        return lamb_op


3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3836
Dpsgd = DpsgdOptimizer
3837
DecayedAdagrad = DecayedAdagradOptimizer
3838
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3839
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3840
Ftrl = FtrlOptimizer
3841
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3842
Lamb = LambOptimizer
3843 3844 3845


class ModelAverage(Optimizer):
3846
    r"""
3847
	:api_attr: Static Graph
S
swtkiwi 已提交
3848

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3877 3878

    Args:
3879 3880 3881
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3882 3883 3884 3885 3886
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3887 3888 3889
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3890

3891
    Examples:
Q
qiaolongfei 已提交
3892 3893 3894

      .. code-block:: python

2
201716010711 已提交
3895
        import paddle
3896 3897
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3898
        paddle.enable_static()
3899 3900 3901 3902

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3903

3904 3905 3906 3907
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3908
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3909
            hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
3910
            loss = paddle.mean(hidden)
3911 3912 3913 3914 3915 3916
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3917
                                                         max_average_window=12500)
3918 3919

            exe.run(startup_program)
3920 3921 3922 3923 3924
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3925 3926

            # apply ModelAverage
3927
            with model_average.apply(exe):
3928 3929 3930 3931
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3932 3933
    """

3934 3935 3936 3937 3938 3939 3940 3941
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
J
Jiabin Yang 已提交
3942
        if framework._non_static_mode():
Z
zhongpu 已提交
3943
            raise Exception("In dygraph, don't support ModelAverage.")
3944
        super().__init__(0.0, regularization=regularization, name=name)
3945 3946 3947
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3948

3949
        self.params_grads = []
3950 3951 3952
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
3953
            if param.do_model_average != False:
3954
                grad = param.block.create_var(
3955 3956 3957
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
3958 3959
                    dtype=param.dtype,
                    persistable=False,
3960 3961
                    stop_gradient=True,
                )
3962
                self.params_grads.append((param, grad))
3963

3964
        for param, grad in self.params_grads:
3965 3966
            if grad is None:
                continue
X
Xin Pan 已提交
3967
            with param.block.program._optimized_guard(
3968 3969
                [param, grad]
            ), name_scope('move_average'):
3970
                self._append_average_accumulate_op(param)
3971

3972 3973 3974 3975
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3976
                self._add_average_apply_op(block, param_grad)
3977 3978 3979 3980 3981

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3982
                self._add_average_restore_op(block, param_grad)
3983

3984
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3985 3986 3987 3988 3989 3990
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3991 3992
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
3993
        old_num_accumulates = block._clone_variable(
3994 3995
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
3996
        num_updates = block._clone_variable(
3997 3998
            self._get_accumulator('num_updates', param)
        )
3999 4000 4001
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4002 4003
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
D
dzhwinter 已提交
4004
        tmp = layers.cast(
4005
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4006
        )
D
dzhwinter 已提交
4007
        sum = layers.cast(
4008
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4009
        )
4010
        paddle.assign(paddle.divide(sum, tmp), output=param)
4011 4012

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4013 4014
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4015 4016 4017 4018 4019 4020 4021
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4058

S
rename  
sneaxiy 已提交
4059
    @signature_safe_contextmanager
4060
    def apply(self, executor, need_restore=True):
4061 4062
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4063 4064

        Args:
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4076 4077
            import paddle
            paddle.enable_static()
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
4089
                loss = paddle.mean(hidden)
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4111
        """
4112 4113 4114 4115 4116 4117
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4118 4119

    def restore(self, executor):
4120 4121
        """
        Restore ``Parameter`` values of current model.
4122

4123
        Args:
4124 4125 4126 4127 4128 4129 4130 4131
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4132 4133
            import paddle
            paddle.enable_static()
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
4145
                loss = paddle.mean(hidden)
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4170
        """
4171
        executor.run(self.restore_program)
4172 4173


4174
class ExponentialMovingAverage:
4175
    r"""
4176
        :api_attr: Static Graph
S
swtkiwi 已提交
4177

4178 4179 4180 4181 4182 4183
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4184
        \\text{EMA}_0 & = 0
4185

4186
        \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t
4187

4188 4189 4190
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4191
    the **restore()** method is used to restore the parameters.
4192

4193 4194 4195 4196
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4197 4198

    ..  math::
4199

4200 4201
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4202 4203
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4204
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4205
    allows users to pass a Variable to schedule the decay rate, in this case,
4206
    the actual decay rate becomes
4207

4208
    ..  math::
4209

4210 4211 4212
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4213 4214 4215


    Args:
4216 4217 4218
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4219 4220 4221 4222


    Examples:

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4251
                    feed={'x': data},
4252 4253 4254 4255 4256 4257
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4258
                        feed={'x': data},
4259 4260 4261 4262 4263 4264
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4265
                        feed={'x': data},
4266 4267 4268
                        fetch_list=[hidden.name])
                ema.restore(exe)

4269 4270
    """

4271
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4272
        if framework._non_static_mode():
Z
zhongpu 已提交
4273
            raise Exception(
4274 4275
                "In dygraph, don't support ExponentialMovingAverage."
            )
4276
        self._decay = decay
4277
        self._thres_steps = thres_steps
4278
        self._name = name if name is not None else ''
4279 4280
        self._decay_var = self._get_ema_decay()

4281
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4282
        self._params_tmps = []
4283
        for param in default_main_program().global_block().all_parameters():
4284
            if param.do_model_average != False:
4285 4286 4287 4288 4289 4290 4291 4292
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4293
                self._params_tmps.append((param, tmp))
4294

Y
Yibing Liu 已提交
4295 4296
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4297 4298 4299
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4300
                self._ema_vars[param.name] = self._create_ema_vars(param)
4301 4302 4303 4304

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4305
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4306
            for param, tmp in self._params_tmps:
4307 4308
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4309
                ema = block._clone_variable(self._ema_vars[param.name])
4310
                layers.assign(input=param, output=tmp)
4311
                # bias correction
4312 4313
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4314 4315 4316
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4317 4318
                    with switch.default():
                        layers.assign(output=param, input=ema)
4319 4320 4321 4322

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4323
            for param, tmp in self._params_tmps:
4324 4325 4326 4327
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4328 4329
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4330
            decay_var = paddle.static.create_global_var(
4331 4332 4333 4334
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4335 4336
                name="scheduled_ema_decay_rate",
            )
4337 4338 4339 4340 4341 4342 4343 4344

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4345 4346
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4347 4348 4349
        return decay_var

    def _get_decay_pow(self, block):
4350
        global_step = paddle.static.create_global_var(
4351 4352 4353 4354 4355 4356
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4357
        global_step = layers.cast(global_step, "float32")
4358
        decay_var = block._clone_variable(self._decay_var)
4359
        decay_pow_acc = paddle.pow(decay_var, global_step)
4360
        return decay_pow_acc, global_step
4361

Y
Yibing Liu 已提交
4362
    def _create_ema_vars(self, param):
4363
        param_ema = paddle.static.create_global_var(
4364 4365 4366 4367
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4368 4369
            persistable=True,
        )
4370 4371 4372

        return param_ema

Y
Yibing Liu 已提交
4373
    def update(self):
4374 4375
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4376 4377
        train program.
        """
4378
        global_step = layers.autoincreased_step_counter(
4379 4380
            counter_name=self._step_counter_name
        )
4381
        param_master_emas = []
Y
Yibing Liu 已提交
4382
        for param, tmp in self._params_tmps:
4383 4384 4385
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4386
                param_ema = self._ema_vars[param.name]
4387
                if param.name + '.master' in self._ema_vars:
4388 4389 4390 4391
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4392 4393
                        1 - self._decay_var
                    )
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4404 4405 4406
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4407

4408 4409 4410 4411
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4412

4413 4414
        Args:
            executor (Executor): The Executor to execute applying.
4415
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4416
                applying. Default True.
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4427

4428 4429 4430 4431
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4432 4433


4434
class PipelineOptimizer:
4435
    """
4436
        :api_attr: Static Graph
S
swtkiwi 已提交
4437

4438 4439 4440 4441
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4442

4443
    Args:
4444 4445 4446
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4447

4448 4449
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4450

4451
            import paddle.fluid as fluid
H
hutuxian 已提交
4452 4453
            import paddle.fluid.layers as layers

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4470
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4471
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4472
            optimizer.minimize(loss)
4473 4474 4475 4476 4477 4478 4479 4480 4481

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4482 4483
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4484 4485
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4486
            exe.train_from_dataset(
4487
                    fluid.default_main_program())
4488
            data_loader.reset()
4489 4490
    """

4491
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4492 4493 4494 4495 4496
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4497
        if framework._non_static_mode():
Z
zhongpu 已提交
4498
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4499 4500 4501 4502 4503
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
            paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
        )
4504
        if not isinstance(optimizer, valid_optimizers):
4505 4506 4507 4508 4509 4510 4511
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4512
        self._optimizer = optimizer
4513 4514 4515 4516 4517 4518

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4519 4520 4521
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4522
        self._num_microbatches = num_microbatches
4523 4524 4525
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4526
        self._start_cpu_core_id = start_cpu_core_id
4527 4528 4529 4530 4531 4532
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4533
        self._param_device_map = None
4534 4535
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4536 4537
        self.output_var_to_op = None
        self.input_var_to_op = None
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4567 4568 4569 4570
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4571 4572
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4573 4574 4575
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4576
                'ring_id': self.global_ring_id,
4577
                self._op_role_key: self._op_role.Optimize,
4578 4579 4580
                'use_calc_stream': True,
            },
        )
4581 4582
        offset += 1
        if op.type == "reduce_any":
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4594
            offset += 1
4595
        return offset
H
hutuxian 已提交
4596

4597
    def _create_vars(self, block, ori_block):
4598
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4599
        used_var_set = set()
4600 4601 4602 4603 4604 4605 4606 4607 4608
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4609
            # For op process vars on all devices, remove its input
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4635 4636 4637 4638 4639 4640 4641 4642
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4643
            for var in vars:
4644 4645
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4646
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4647 4648
                    continue
                used_var_set.add(var)
4649 4650
                if block._find_var_recursive(str(var)):
                    continue
4651
                source_var = ori_block._var_recursive(str(var))
4652
                if source_var.type == core.VarDesc.VarType.READER:
4653
                    dest_var = block.create_var(
4654 4655
                        name=var,
                        type=core.VarDesc.VarType.READER,
4656 4657
                        persistable=source_var.persistable,
                    )
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4669 4670
                        error_clip=source_var.error_clip,
                    )
4671
                else:
4672
                    dest_var = block._clone_variable(source_var, False)
4673
                self._clone_var_attr(dest_var, source_var)
4674 4675 4676
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4677 4678
            if self.use_sharding or not should_insert:
                continue
4679 4680 4681 4682
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4683

4684
    def _is_loss_grad_op(self, op):
4685 4686
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4687
        return op_role & int(self._op_role.Backward) and op_role & int(
4688 4689
            self._op_role.Loss
        )
4690

4691
    def _is_forward_op(self, op):
4692 4693 4694
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4695

4696
    def _is_backward_op(self, op):
4697
        return self._op_role_key in op.attr_names and (
4698 4699
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4700 4701 4702 4703

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4704 4705

    def _is_optimize_op(self, op):
4706
        return self._op_role_key in op.attr_names and (
4707 4708
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4709 4710

    def _is_update_op(self, op):
4711 4712 4713 4714 4715
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4716

4717
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4718
        """
4719
        Split a program into sections according to devices that ops run on.
4720
        The op whose op_device attr is "gpu:all" is copied to all sections.
4721 4722 4723

        Args:
            main_program (Program): the main program
4724
            devices: all used devices
H
hutuxian 已提交
4725
        """
4726
        # Map from device to its corresponding section program info
4727
        device_program_map = defaultdict(Program)
4728

4729
        block = main_program.block(0)
4730 4731
        for op in block.ops:
            device = op.attr(self._op_device_key)
4732
            # Copy ops whose op_device set to "gpu:all" to all sections.
4733
            if device == f"{self._device}:all":
4734
                for device in devices:
4735 4736
                    program = device_program_map[device]
                    op_desc = op.desc
4737
                    ap_op = program.global_block().desc.append_op()
4738
                    ap_op.copy_from(op_desc)
4739
                    ap_op._set_attr(self._op_device_key, "")
4740 4741 4742
            else:
                program = device_program_map[device]
                op_desc = op.desc
4743
                ap_op = program.global_block().desc.append_op()
4744
                ap_op.copy_from(op_desc)
4745
                ap_op._set_attr(self._op_device_key, "")
4746

4747
        program_list = []
4748
        for key in devices:
4749
            program = device_program_map[key]
4750 4751
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4752

4753
        return program_list
H
hutuxian 已提交
4754

4755 4756 4757 4758 4759 4760 4761
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4762 4763
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4764
            'or beta2_pow_acc.'
4765 4766
        )
        param_name = var_name[0 : var_name.index('_beta')]
4767 4768 4769
        device = self._param_device_map[param_name]
        return device

4770 4771
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4772 4773 4774
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4775 4776
            if device == "cpu":
                assert op.type == "fill_constant", (
4777
                    "For ops in startup program with the op_device attribute "
4778 4779
                    "of cpu, they must be of type fill_constant."
                )
4780 4781 4782
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4783
            if device:
4784
                device_index = int(device.split(':')[1])
4785
            else:
4786 4787
                # LR related ops
                device = None
4788 4789
            if device and device_index != device_id:
                continue
4790
            op_desc = op.desc
4791
            ap_op = new_startup_program.global_block().desc.append_op()
4792 4793 4794
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4795
        self._create_vars(new_startup_program.global_block(), block)
4796 4797
        return new_startup_program

4798
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4799
        """
4800
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4801
        """
4802 4803 4804 4805 4806 4807
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4808
        post_ops = self.input_var_to_op[var_name]
4809
        if post_ops is None:
4810
            return None
4811 4812 4813 4814 4815 4816
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4817

4818
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4819
        """
4820 4821
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4822
        """
4823
        prev_ops = self.output_var_to_op[var_name]
4824
        if prev_ops is None:
4825
            return None
4826 4827 4828 4829
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4830
                break
4831
        return result_op
4832 4833

    def _rename_arg(self, op, old_name, new_name):
4834 4835
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4836

4837
    def _create_var(self, block, ref_var, name, dtype=None):
4838 4839 4840 4841 4842 4843 4844 4845
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4846
            dtype=ref_var.dtype if dtype is None else dtype,
4847 4848
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4849 4850
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4851 4852
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4853
        self._clone_var_attr(new_var, ref_var)
4854 4855
        return new_var

4856 4857 4858 4859 4860
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4861 4862 4863 4864 4865 4866
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4867

4868 4869 4870 4871 4872 4873
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4874
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4875
        """
4876
        Get the op_device attribute of a op.
H
hutuxian 已提交
4877
        """
4878 4879 4880 4881 4882
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4883
        if device:
4884 4885
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4886
                "supported in pipeline parallemism."
4887
            )
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4901
            op._set_attr(self._op_device_key, f"{self._device}:all")
4902 4903 4904 4905
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4906 4907 4908
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4909 4910 4911 4912
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4913 4914 4915 4916
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4917 4918 4919
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4920 4921 4922
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4923
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4924 4925
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4926
            # for checkpoint offloading
4927 4928 4929
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4930 4931 4932
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4933
                post_op = self._find_post_op(idx, output_name)
4934 4935 4936
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4937
            else:
4938
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4939 4940 4941
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
4942 4943 4944
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4945 4946 4947
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
4948 4949 4950 4951 4952 4953 4954 4955 4956
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4957
            param_name = self._strip_grad_suffix(grad_name[0])
4958 4959 4960 4961 4962
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
4963 4964
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
4965
                "and regularization ops must have op_role_var attribute."
4966
            )
4967
            op_role_var = op.attr(self._op_role_var_key)
4968 4969
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
4970
                "regularization ops must have two elements."
4971
            )
4972 4973
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4974
            # For sum op added by global gradient clip, it must be
4975
            # put on all devices
4976 4977 4978 4979 4980 4981 4982
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
4983
                device = f"{self._device}:all"
4984
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4985
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4986
            op._set_attr(self._op_device_key, f"{self._device}:all")
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4997 4998
        else:
            other_known_ops = [
4999 5000 5001 5002 5003 5004
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5005
            ]
5006 5007 5008
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5009
                "is {}".format(other_known_ops, op.type)
5010
            )
5011
            assert self._is_optimize_op(op)
5012
            op._set_attr(self._op_device_key, f"{self._device}:all")
5013 5014

    def _add_op_device_attr(self, block):
5015
        """
5016
        Add op_device attrribute for ops in block that have
5017
        not that attribute set.
5018
        """
5019
        for idx, op in enumerate(list(block.ops)):
5020 5021 5022 5023 5024
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5025
                # Copy read related ops to all section to make them exit
5026 5027 5028 5029
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5030
                op._set_attr(self._op_device_key, f"{self._device}:all")
5031 5032
                continue
            # op_device attribute has been set
5033 5034
            if self._get_op_device_attr(op):
                continue
5035
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5036

5037 5038
    def _check_validation(self, block):
        """
5039
        Check whether ops in a block have both the op_device and the
5040 5041
        op_role attributes set.
        Then, return all devices in order.
5042
        """
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5053
        for op in block.ops:
5054
            if not op._has_kernel(op.type):
5055 5056 5057 5058 5059 5060
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5061
            assert op.has_attr(
5062 5063
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5064
            op_role = op.attr(self._op_role_key)
5065 5066 5067 5068 5069
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5070

5071
            assert op.has_attr(
5072 5073 5074 5075
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5076 5077

            device = op.attr(self._op_device_key)
5078 5079 5080 5081 5082 5083 5084
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5085

5086
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5087 5088
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5089 5090
                "for pipeline parallelism."
            )
5091 5092

            if device not in device_list:
5093
                device_list.append(device)
5094

5095
        return device_list
5096

5097
    def _insert_sendrecv_ops_for_boundaries(self, block):
5098
        """
5099
        Insert a pair of send and recv ops for every two
5100 5101
        consecutive ops on different devices.
        """
5102
        # A map from var to device where op takes it as input,
5103
        # avoiding multiple send and recv ops.
5104
        input_var_to_device = dict()
5105 5106 5107 5108 5109 5110 5111 5112
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5113
            'first_optimize_index': first_optimize_index,
5114
        }
5115

5116
        for index, op in enumerate(list(block.ops)):
5117
            cur_device = op.attr(self._op_device_key)
5118 5119
            if cur_device == f"{self._device}:all":
                continue
5120 5121
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5122
                # skip data var
5123 5124
                if var.is_data:
                    continue
5125
                prev_device = None
5126 5127 5128

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5129 5130
                    if var_name not in self._param_device_map:
                        continue
5131
                    prev_device = self._param_device_map[var_name]
5132

5133
                if not prev_device:
5134 5135 5136
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5137

5138 5139
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5140

5141 5142
                if prev_device == cur_device:
                    continue
5143

5144 5145 5146 5147 5148 5149 5150
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5151 5152 5153 5154
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5155 5156
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5157
                        'please check the op_role of op={}'.format(op)
5158
                    )
5159 5160

                    if is_forward:
5161 5162
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5163
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5164 5165 5166
                                prev_id, cur_id, op
                            )
                        )
5167
                    elif is_backward:
5168 5169
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5170
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5171 5172 5173
                                prev_id, cur_id, op
                            )
                        )
5174

5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5185 5186
                            (cur_dev, prev_dev)
                        )
5187 5188 5189 5190 5191
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5192 5193
                            (cur_dev, prev_dev)
                        )
5194 5195 5196 5197 5198 5199
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5200
                    var = block.vars[var_name]
5201 5202 5203
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5204 5205 5206 5207 5208 5209 5210
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5211

5212
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5213
                        block._insert_op_without_sync(
5214
                            index=index + extra_index_info['index'],
5215 5216 5217
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5218
                                self._op_device_key: prev_dev,
5219 5220 5221
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5222 5223 5224
                                'ring_id': ring_id,
                            },
                        )
5225
                        extra_index_info['index'] += 1
5226
                        var_shape = list(var.shape)
5227 5228 5229 5230 5231
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5232
                        block._insert_op_without_sync(
5233
                            index=index + extra_index_info['index'],
5234 5235 5236
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5237
                                'out_shape': var_shape,
5238
                                'dtype': var.dtype,
5239
                                self._op_device_key: cur_dev,
5240 5241 5242
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5243 5244 5245
                                'ring_id': ring_id,
                            },
                        )
5246
                        extra_index_info['index'] += 1
5247
                    elif self.schedule_mode == '1F1B':  # 1F1B
5248
                        var_shape = list(var.shape)
5249 5250 5251 5252 5253
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5254

5255
                        numel = np.prod(var_shape)
5256 5257 5258
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5281 5282
                                },
                            )
5283 5284 5285
                            extra_index_info['index'] += 1
                            return

5286 5287
                        _check_stage(cur_id, prev_id)

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5298
                        extra_index_info['index'] += 1
5299 5300
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5301 5302 5303
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5304
                        block._insert_op_without_sync(
5305
                            index=index + extra_index_info['index'],
5306
                            type='send_v2'
5307 5308
                            if not use_mp or is_param
                            else 'partial_send',
5309 5310
                            inputs={'X': var},
                            attrs={
5311
                                self._op_device_key: prev_dev,
5312 5313 5314 5315
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5316 5317 5318
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5319 5320
                            },
                        )
5321
                        extra_index_info['index'] += 1
5322 5323 5324
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5325 5326
                                'first_optimize_index'
                            ]
5327 5328 5329 5330
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5331
                        sync_comm_op = block._insert_op_without_sync(
5332
                            index=insert_index + extra_index_info['index'],
5333 5334 5335 5336
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5337
                                self._op_device_key: prev_dev,
5338
                                self._op_role_key: new_op_role,
5339
                                'ring_id': ring_id,
5340 5341
                            },
                        )
5342
                        if int(op_role) == int(self._op_role.Forward):
5343
                            sync_comm_op._set_attr('pipeline_flag', '')
5344
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5345
                        block._insert_op_without_sync(
5346
                            index=index + extra_index_info['index'],
5347
                            type='recv_v2'
5348 5349
                            if not use_mp or is_param
                            else 'partial_recv',
5350 5351 5352 5353
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5354
                                self._op_device_key: cur_dev,
5355 5356 5357
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5358 5359 5360 5361
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5362 5363
                            },
                        )
5364
                        extra_index_info['index'] += 1
5365
                        if use_mp and not is_param:
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5379 5380
                                },
                            )
5381
                            extra_index_info['index'] += 1
5382 5383 5384
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5385 5386
                            "The given value is {}.".format(self.schedule_mode)
                        )
5387

5388 5389 5390 5391
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5392 5393
        block._sync_with_cpp()

5394
    def _insert_loss_scale(self, block):
5395
        """
5396
        Scale the loss corresponding to number of micro-batches.
5397
        """
5398 5399
        if self._num_microbatches == 1:
            return
5400
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5401
            if self._is_loss_grad_op(op):
5402 5403
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5404
                    "but this op is {}".format(op.type)
5405
                )
5406 5407 5408 5409
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5410 5411
                break

5412 5413
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5414 5415
            if not self._is_optimize_op(op):
                continue
5416 5417 5418
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5419 5420
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5421 5422 5423
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5424 5425
                if not core.grad_var_suffix() in name:
                    continue
5426 5427 5428 5429
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5430 5431 5432
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5433 5434 5435 5436
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5437 5438
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5439
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5440 5441
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5442 5443
            return fused_gradient_names

5444 5445 5446
        merged_gradient_names = []
        first_opt_op_idx = None

5447 5448 5449
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5450 5451 5452 5453 5454 5455 5456 5457
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5458
                    continue
5459

5460
            if self._is_backward_op(op) and first_opt_op_idx is None:
5461
                first_opt_op_idx = index + 1
5462 5463
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5464

5465 5466 5467
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5468
                op_role_var = op.attr(self._op_role_var_key)
5469 5470
                if len(op_role_var) == 0:
                    continue
5471 5472
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5473 5474
                    offset = 0
                    param_name = op_role_var[i]
5475 5476 5477 5478
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5479

5480
                    param_grad_name = param_name + core.grad_var_suffix()
5481
                    merged_param_grad_name = param_grad_name + merged_suffix
5482
                    if not block.has_var(merged_param_grad_name):
5483 5484 5485 5486 5487 5488
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5489
                    assert block.has_var(merged_param_grad_name)
5490

5491 5492 5493
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5494
                    block._insert_op(
5495 5496 5497 5498
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5499
                        attrs={
5500 5501 5502
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5503
                            # a trick to run this op once per mini-batch
5504 5505 5506
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5507
                    offset += 1
5508 5509
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5510 5511

                    is_fp16_grad = 'cast_fp16' in grad_name
5512
                    need_cast = is_fp16_grad is not fp16_allreduce
5513 5514 5515 5516 5517 5518

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5519
                        cast_grad_var_name = param_grad_name + '@TMP'
5520
                        cast_grad_var = self._create_var(
5521 5522
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5523
                        cast_grad_var.persistable = False
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5535
                        offset += 1
5536 5537 5538 5539 5540 5541 5542
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5543 5544
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5545 5546
                        },
                    )
5547 5548 5549
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5550 5551
        if not fp16_allreduce:
            return merged_gradient_names
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5586

5587
        return merged_gradient_names
5588

5589 5590 5591
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5592
        grad_param_pairs = self._sort_grad_param_by_dtype(
5593 5594
            main_block, grad_param_pairs
        )
5595

5596 5597 5598
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5599
        cur_size = 0.0
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5610 5611
                stop_gradient=False,
            )
5612
            real_param = main_block.var(param)
5613 5614
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5615 5616 5617 5618
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5619 5620 5621 5622 5623
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5624
                grad_param_segments.append(
5625 5626
                    ([real_grad], [real_param], [merged_grad_var])
                )
5627
                last_dtype = real_grad.dtype
5628
                cur_size = 0.0
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5641 5642 5643 5644 5645 5646
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5647
            # keep the '.cast_fp16' info in the fuse var name
5648 5649 5650 5651 5652 5653 5654 5655 5656
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5657 5658 5659 5660
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5661 5662
                stop_gradient=False,
            )
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5688
                outputs={"Output": grads, "FusedOutput": fused_grad},
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5705 5706 5707 5708 5709 5710 5711
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5712 5713
                },
            )
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5724
                    "FusedOutput": fused_merged_grad,
5725 5726 5727 5728 5729 5730 5731 5732
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5733 5734 5735
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5736 5737 5738 5739 5740 5741 5742 5743 5744
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5745
            need_cast = is_fp16_grad is not fp16
5746 5747 5748 5749
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5767 5768 5769 5770 5771 5772 5773
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5774 5775
                attrs={self._op_role_key: self._op_role.Backward},
            )
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5804 5805 5806 5807 5808 5809
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5810
        return fused_merged_gradients, first_opt_op_idx
5811

5812 5813 5814
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5834 5835 5836
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5848 5849
                        (op_role_var[i + 1], op_role_var[i])
                    )
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5863 5864 5865 5866 5867 5868
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5869 5870 5871 5872
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5873

5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5904 5905 5906 5907 5908 5909
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5910

5911 5912
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5913
        for prog in program_list:
5914 5915 5916 5917 5918 5919
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5920 5921
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5922 5923 5924
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5925
                self._create_vars(new_sub_block, origin_sub_block)
5926
                op._set_attr('sub_block', new_sub_block)
5927 5928 5929

    def _get_device_info(self, block):
        for op in block.ops:
5930 5931
            if not op._has_kernel(op.type):
                continue
5932 5933 5934
            op_device = op.attr(self._op_device_key)
            return op_device

5935 5936 5937
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
5938 5939 5940 5941 5942 5943 5944
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5945
        for prog in program_list:
5946 5947
            block = prog.block(0)
            for var_name in block.vars:
5948 5949
                if var_name == "double_buffer_0":
                    continue
5950
                var = block.var(var_name)
5951 5952
                if not var.persistable:
                    continue
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5968 5969 5970 5971 5972 5973
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
5974
                        continue
5975 5976
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
5977 5978
                        self._op_role.Optimize.LRSched
                    ):
5979 5980 5981 5982
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
5983 5984
                            "op {}.".format(var_name, op)
                        )
5985 5986 5987 5988 5989
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
5990 5991
            if not var_name in write_info:
                continue
5992 5993 5994 5995 5996

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5997
            write_dev_index = int(write_device.split(':')[1])
5998 5999
            all_progs = var_info[var_name]
            for prog in all_progs:
6000 6001
                if prog == write_prog:
                    continue
6002 6003 6004
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6005 6006 6007 6008 6009 6010 6011 6012 6013
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6014 6015 6016

                write_block._insert_op(
                    index=0,
6017
                    type='send_v2',
6018 6019 6020
                    inputs={
                        'X': write_block.var(var_name),
                    },
6021
                    attrs={
6022 6023
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6024 6025
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6026 6027 6028 6029 6030
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6031 6032
                read_block._insert_op(
                    index=0,
6033
                    type='recv_v2',
6034 6035
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6036 6037 6038 6039
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6040 6041
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6042 6043 6044 6045 6046
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6047 6048 6049 6050 6051 6052
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6053
                        self._op_device_key: read_device,
6054 6055
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6056 6057 6058 6059
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6060 6061

    def _is_gradient_clip_op(self, op):
6062 6063 6064
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6065 6066

    def _is_regularization_op(self, op):
6067 6068 6069
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6070

6071 6072
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6073 6074 6075
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6076

6077 6078 6079 6080 6081
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6082
        output_var_to_op = defaultdict(list)
6083
        # A map from var to op which takes it as input.
6084
        input_var_to_op = defaultdict(list)
6085

6086
        for index, op in enumerate(block.ops):
6087
            for var_name in op.input_arg_names:
6088
                input_var_to_op[var_name].append([op, index])
6089
            for var_name in op.output_arg_names:
6090 6091 6092 6093 6094 6095 6096 6097
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6098 6099
        if self.schedule_mode != '1F1B':
            return
6100 6101 6102

        block = program.block(0)

6103
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6104 6105
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6106
            if op.type == recv_type and self._is_backward_op(op):
6107 6108 6109
                backward_recv_index = index
                break

6110
        # last pipeline stage
6111 6112
        if backward_recv_index is None:
            return
6113 6114 6115

        offset = 0
        for index, op in enumerate(list(block.ops)):
6116 6117
            if index >= backward_recv_index:
                break
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6134 6135
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6136
        block._sync_with_cpp()
6137

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6151 6152 6153 6154
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6155
                backward_insert_index = i
6156 6157 6158 6159 6160 6161
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6181 6182 6183 6184 6185 6186 6187
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6188 6189 6190 6191 6192 6193 6194
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6222 6223
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6224

6225 6226 6227
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6228
        main_block = loss.block
6229
        self.origin_main_block = main_block
6230
        main_program = main_block.program
6231 6232
        if startup_program is None:
            startup_program = default_startup_program()
6233

6234 6235
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6236 6237 6238 6239 6240 6241 6242
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6243 6244
            'mp_degree',
            'mp_rank',
6245 6246
        ]
        for key in required_keys:
6247 6248 6249
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6250 6251 6252 6253 6254 6255 6256 6257
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6258
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6259 6260
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6261 6262

        optimize_ops, params_grads = self._optimizer.minimize(
6263 6264
            loss, startup_program, parameter_list, no_grad_set
        )
6265
        self._param_device_map = self._origin_optimizer._param_device_map
6266

6267 6268 6269 6270
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6271 6272 6273
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6285 6286 6287
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6288 6289
            "another in the order of their ids."
        )
6290
        # Step2: add send and recv ops between section boundaries
6291
        self._insert_sendrecv_ops_for_boundaries(main_block)
6292

6293
        # Step3: split program into sections and add pairs of
6294 6295
        # send and recv ops for data var.
        main_program = main_block.program
6296
        program_list = self._split_program(main_program, device_list)
6297
        for p in program_list:
6298
            self._create_vars(p.global_block(), main_block)
6299

L
lilong12 已提交
6300 6301 6302 6303 6304
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6305 6306
                "stages."
            )
L
lilong12 已提交
6307 6308
        else:
            self.local_rank %= len(device_list)
6309 6310 6311
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6312
        # Step4: Special Case: process persistable vars that exist in
6313
        # multiple sections
6314
        # FIXME
6315 6316
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6317

6318
        # Step5: Add sub blocks for section programs
6319 6320
        self._add_sub_blocks(main_block, program_list)

6321
        place_list = []
6322 6323
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6324 6325 6326 6327
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6328

6329
        # Step6: Split startup program
6330
        new_startup_program = self._split_startup_program(
6331 6332
            startup_program, self.local_rank
        )
6333 6334 6335 6336

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6337
        real_block = program_list[self.local_rank].global_block()
6338 6339
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6340
        if not self.use_sharding:
6341
            # Step7: clear gradients before each mini-batch and
6342 6343 6344 6345 6346
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6347

6348 6349 6350 6351
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6352 6353 6354
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6355 6356 6357 6358 6359

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6360
        main_program._pipeline_opt = {
H
hutuxian 已提交
6361 6362
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6363
            "pipeline_stage": self.local_rank,
6364
            "num_pipeline_stages": len(device_list),
6365
            "schedule_mode": self.schedule_mode,
6366
            "inner_parallelism": len(device_list),
6367 6368
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6369
            "place_id": place_id,
6370
            "sync_steps": -1,
L
lilong12 已提交
6371
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6372 6373
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6374 6375 6376 6377 6378 6379 6380
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6381 6382


M
mapingshuo 已提交
6383 6384
class RecomputeOptimizer(Optimizer):
    """
6385
        :api_attr: Static Graph
S
swtkiwi 已提交
6386

M
mapingshuo 已提交
6387 6388 6389
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6390
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6391 6392 6393
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6394
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6395 6396 6397
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6398
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6399 6400
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6401

M
mapingshuo 已提交
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6447
        if framework._non_static_mode():
Z
zhongpu 已提交
6448
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6449 6450
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6451 6452
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6453
        self.enable_offload = False
M
mapingshuo 已提交
6454 6455

    def _set_checkpoints(self, checkpoints):
6456 6457
        """
        Args:
6458
            checkpoints (list): List of Variable or string
6459 6460 6461 6462 6463
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6464 6465
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6466
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6467 6468
        self._checkpoints = checkpoints

6469
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6470 6471 6472
    def _enable_offload(self):
        self.enable_offload = True

6473 6474
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6475
        """
6476
            :api_attr: Static Graph
S
swtkiwi 已提交
6477

M
mapingshuo 已提交
6478 6479 6480 6481
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6482
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6483 6484 6485 6486

        Examples:
            .. code-block:: python

6487
                import paddle
M
mapingshuo 已提交
6488
                import paddle.fluid as fluid
6489

6490
                paddle.enable_static()
M
mapingshuo 已提交
6491 6492 6493 6494 6495 6496
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6497

M
mapingshuo 已提交
6498 6499 6500 6501
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6502

M
mapingshuo 已提交
6503 6504 6505 6506
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6507 6508
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6509
                except NotImplementedError as e:
6510
                    print(e)
M
mapingshuo 已提交
6511 6512
        """
        raise NotImplementedError(
6513 6514
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6547
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6548 6549 6550 6551
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6552
                    no_grad_set=None)
M
mapingshuo 已提交
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6572 6573
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6574 6575 6576 6577 6578 6579

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6580 6581
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6582 6583 6584 6585 6586 6587 6588 6589

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6590 6591 6592
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6619 6620 6621

        return

6622 6623 6624
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6625 6626 6627 6628 6629 6630 6631 6632
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6633 6634
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6635 6636

    def _insert_fetch_op(self, idx, varname):
6637 6638 6639 6640 6641
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6642 6643 6644

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6645
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6646 6647

    def _insert_offload_op(self, idx, varname):
6648 6649 6650 6651 6652
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6653
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6654
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6655 6656

    def _insert_sync_op(self, op_idx, checkpoint_name):
6657
        # single stream offload no need sync
J
JZ-LIANG 已提交
6658 6659 6660
        pass

    def _record_fetch_op(self, idx):
6661 6662 6663
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6664 6665 6666 6667 6668 6669 6670 6671
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6672 6673 6674 6675 6676
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6677 6678 6679 6680
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6681 6682 6683
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6684 6685 6686 6687 6688 6689 6690
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6691
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6706 6707
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6708 6709 6710

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6711 6712
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6713 6714
        last_last_fetch_checkpoint = None

6715
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6725 6726 6727
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6728
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6729
                            if input_var != self.sorted_checkpoint_names[0]:
6730 6731 6732
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6733

6734
                        # should check the current used checkpoint is ths last fetch one
6735 6736 6737 6738 6739
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6740 6741 6742
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6743 6744
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6745 6746 6747 6748
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6749 6750 6751
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6752

6753 6754 6755 6756 6757
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6768
                    logging.debug(
6769 6770
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6771 6772 6773 6774 6775
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6776 6777 6778 6779 6780
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6781 6782 6783 6784

    def _parse_forward(self):

        self.idx2insertions = {}
6785
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6786 6787 6788 6789 6790 6791 6792
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6793
                'idx': -1,
J
JZ-LIANG 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6803 6804
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6805 6806
        last_offload_checkpoint = None

6807
        for i, op in enumerate(
6808 6809
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6810 6811 6812 6813 6814 6815 6816

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6817 6818 6819 6820 6821
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6822 6823 6824

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6825
                        if last_offload_checkpoint is not None:
6826 6827 6828 6829 6830 6831 6832 6833 6834
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6835
                            else:
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6849 6850 6851 6852 6853
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6854 6855 6856 6857
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6858 6859
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6873
                    # sync if last checkpoint has not been sync
6874 6875 6876 6877 6878 6879
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6880 6881 6882
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6893
            # record checkpoint usage
J
JZ-LIANG 已提交
6894 6895
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6896 6897 6898
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6899 6900 6901
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6902 6903 6904 6905 6906
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6907 6908 6909
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6910 6911
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6912 6913 6914 6915 6916

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6917 6918
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6919 6920 6921 6922
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6923
                    logging.debug(
6924 6925
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6926 6927 6928
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6929
                    logging.debug(
6930 6931
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6932 6933 6934
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
6935 6936 6937 6938 6939
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6940 6941 6942 6943 6944 6945 6946 6947

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
6948
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
6949 6950 6951 6952 6953 6954
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
6955
        if startup_program is None:
J
JZ-LIANG 已提交
6956
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6957 6958

        with program_guard(self._main_program, startup_program):
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
6969 6970 6971 6972
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
6973 6974
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
6975
                self.checkpoint_name2pinned_name[
6976 6977
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
6978
                self.checkpoint_name2fetch_name[
6979 6980
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

6994 6995 6996 6997 6998 6999 7000 7001
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7002 7003 7004 7005 7006 7007 7008
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7009 7010
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7011 7012 7013 7014 7015 7016 7017 7018
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
7019

M
mapingshuo 已提交
7020 7021 7022 7023 7024 7025
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
7026 7027


M
mapingshuo 已提交
7028 7029 7030 7031
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7032

M
mapingshuo 已提交
7033 7034
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7035
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7036 7037 7038 7039
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7040
                    no_grad_set=None)
M
mapingshuo 已提交
7041 7042
                print("Finished backward")
        """
7043 7044 7045
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7046

J
Jiabin Yang 已提交
7047
        if framework._non_static_mode():
M
mapingshuo 已提交
7048
            raise NotImplementedError(
7049 7050
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7051 7052 7053 7054

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7055 7056 7057 7058 7059 7060 7061
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7062 7063 7064 7065 7066 7067
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7068 7069
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7070
            else:
7071 7072 7073 7074 7075 7076
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7077 7078 7079 7080 7081

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
7095

M
mapingshuo 已提交
7096 7097 7098 7099 7100
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
7101 7102
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7103 7104 7105 7106
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7107

M
mapingshuo 已提交
7108 7109
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7110
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7111 7112 7113 7114
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7115
                    no_grad_set=None)
7116

M
mapingshuo 已提交
7117 7118
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7119

M
mapingshuo 已提交
7120 7121 7122
                print("Finished apply_optimize")
        """

7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7135
        assert isinstance(loss, Variable), "The loss should be an Variable."
7136 7137 7138
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
7139
        if framework._non_static_mode():
M
mapingshuo 已提交
7140
            raise NotImplementedError(
7141 7142 7143 7144 7145 7146 7147 7148
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7149

7150 7151 7152
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7153 7154 7155 7156

        return optimize_ops, params_grads


7157
class LookaheadOptimizer:
7158
    r"""
7159
        :api_attr: Static Graph
S
swtkiwi 已提交
7160

M
mapingshuo 已提交
7161 7162 7163 7164
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7165 7166
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7167 7168 7169
    every k training steps as follows:

    .. math::
7170

M
mapingshuo 已提交
7171
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7172

7173
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7174 7175

    Args:
7176
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7186
            import numpy.random as random
M
mapingshuo 已提交
7187

7188
            paddle.enable_static()
7189

7190 7191 7192 7193
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
7194
            loss = paddle.mean(x=loss)
7195 7196 7197 7198 7199 7200 7201 7202 7203
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7204

7205 7206 7207
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7208

7209 7210
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7211

7212 7213 7214
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7215 7216 7217 7218 7219

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
7220
        if framework._non_static_mode():
Z
zhongpu 已提交
7221
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7222
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7223 7224 7225
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7226
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7237 7238
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7250 7251 7252 7253 7254 7255 7256
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7257 7258 7259 7260 7261 7262
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7263 7264 7265 7266 7267 7268 7269
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7270

7271 7272 7273
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7274

7275 7276
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7277
            k = paddle.static.create_global_var(
7278 7279 7280 7281 7282 7283
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7284

7285
            # Add Var alpha to main prog and startup prog
7286
            alpha = paddle.static.create_global_var(
7287 7288 7289 7290 7291 7292
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7293

7294
            # Add Var step
7295
            step = paddle.static.create_global_var(
7296 7297 7298 7299 7300 7301
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7302 7303 7304
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
7305 7306 7307
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7308

7309 7310 7311
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7312

7313
            mod = paddle.remainder(step, k)
7314
            with layers.control_flow.Switch() as switch:
7315 7316 7317 7318 7319
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7320 7321 7322 7323
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7324 7325 7326 7327
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7328 7329
                            ),
                        )
7330 7331 7332 7333
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7334
        return mini_out
7335 7336


7337
class GradientMergeOptimizer:
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7392 7393
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7394
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7395
        if framework._non_static_mode():
7396 7397 7398
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7399 7400
                "and one-time optimizer.minimize()"
            )
7401

7402 7403 7404 7405
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7406 7407 7408 7409 7410

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7411
        self._optimize_ops = None
7412

7413 7414 7415 7416 7417 7418
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7419 7420 7421 7422 7423 7424 7425 7426
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7427 7428 7429 7430 7431 7432 7433 7434 7435
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7436 7437
            loss, startup_program=startup_program
        )
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7449 7450 7451
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7452 7453 7454 7455 7456 7457
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7458 7459 7460 7461 7462
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7463 7464 7465

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7502
        k_step_var = paddle.static.create_global_var(
7503 7504 7505 7506 7507 7508 7509 7510
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7511
        zero_var = paddle.static.create_global_var(
7512 7513 7514 7515 7516 7517 7518
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7519 7520

        # Add step var & cond var
7521
        step_var = paddle.static.create_global_var(
7522 7523 7524 7525 7526 7527 7528
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7529

7530 7531 7532
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7533 7534 7535 7536

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7537 7538 7539 7540 7541 7542
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7543 7544

            # cond_var = (step_var == 0)
7545 7546 7547 7548 7549
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7560

7561
        # TODO(mapingshuo) support sparse embedding
7562 7563
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7564
            assert (
7565
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7566 7567
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7568
            self._remove_op_role_var(param, grad)
7569

7570
        param_to_grad = {k.name: v for (k, v) in params_grads}
7571 7572 7573
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7574 7575 7576 7577 7578
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7579
            param_var = main_block.var(param_name)
7580 7581 7582 7583 7584 7585 7586
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7587
            param_to_gradient_merge[param_name] = gradient_merge_var
7588

7589 7590 7591 7592
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7604

7605 7606 7607
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7608
                inputs={'X': grad, 'Y': gradient_merge_var},
7609
                outputs={'Out': gradient_merge_var},
7610 7611 7612 7613 7614
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7615 7616 7617 7618 7619 7620 7621 7622
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7623
            op_maker = core.op_proto_and_checker_maker
7624 7625 7626 7627

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7641

7642 7643 7644 7645 7646 7647
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7648

7649
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7650 7651
                new_params_grads
            )
7652

7653 7654
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7655 7656 7657 7658 7659 7660 7661 7662 7663
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7664 7665 7666 7667 7668 7669

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

7670 7671 7672
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7673 7674
        assert isinstance(loss, Variable), "The loss should be an Variable."

7675 7676 7677 7678 7679 7680
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7681

7682 7683 7684
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7685 7686

        return optimize_ops, params_grads