executor.py 70.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator, convert_np_dtype_to_dtype_
27
from . import core
28
from . import unique_name
29 30
from . import compiler
from .. import compat as cpt
31
from .trainer_factory import TrainerFactory
32
from .trainer_factory import FetchHandlerMonitor
33
import copy
34
from . import framework
35
from .incubate.checkpoint import auto_checkpoint as acp
36

T
Tink_Y 已提交
37
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
38

Y
Yu Yang 已提交
39
g_scope = core.Scope()
F
flame 已提交
40 41
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43

Y
Yang Yu 已提交
44
def global_scope():
Y
yuyang18 已提交
45
    """
46 47
    :api_attr: Static Graph

Y
yuyang18 已提交
48 49 50
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
51 52 53
    Returns:
        Scope: The global/default scope instance.

54 55 56 57 58 59 60 61
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
62
    """
Y
Yang Yu 已提交
63 64 65
    return g_scope


66
def _switch_scope(scope):
Y
Yang Yu 已提交
67 68 69 70 71 72
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
73
@signature_safe_contextmanager
Y
Yang Yu 已提交
74
def scope_guard(scope):
Y
yuyang18 已提交
75
    """
76 77
    :api_attr: Static Graph
    
78 79 80 81 82 83 84 85 86 87 88 89
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
90

91 92
    Returns:
        None
L
lujun 已提交
93

Y
yuyang18 已提交
94
    Examples:
95 96
        .. code-block:: python

97
            import paddle.fluid as fluid
L
lujun 已提交
98
            import numpy
Y
yuyang18 已提交
99

L
lujun 已提交
100 101 102 103
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
104
    """
L
lujun 已提交
105

106
    ex = _switch_scope(scope)
107 108 109 110
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
111 112


113
def as_numpy(tensor, copy=False):
114 115 116
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
117

118
    Examples:
119 120 121 122 123 124 125 126 127 128
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
129 130 131

    Args:
       tensor(Variable): a instance of Tensor
132
       copy(bool, optional): Whether to use deep copy.
133 134 135 136

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
137 138
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
139 140 141 142
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
143
    if len(lod) > 0:
D
dzhwinter 已提交
144
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
145 146 147
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
148
    if tensor._is_initialized():
149 150 151 152
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
153 154
    else:
        return None
D
dzhwinter 已提交
155 156


H
Huihuang Zheng 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
181 182
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


210
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
211 212
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
213
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
214 215 216

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
217 218
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
219 220 221 222
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
223
        feed (LoDTensor): the fed value, which must be a LoDTensor
224 225
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
226 227 228 229 230 231 232
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
233 234
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
235
            raise ValueError(
T
tianshuo78520a 已提交
236 237
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
238
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
239
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
240 241 242 243 244
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
245 246
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
247 248 249
    return True


250 251 252 253 254 255 256 257 258 259 260 261
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
262 263
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
264 265 266
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
267
        A boolean value that indicates whether a block has feed operators
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
290

291 292 293 294 295 296 297 298 299
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
300 301 302
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
303

X
xuwei06 已提交
304 305 306
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
328
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
329
    """
C
chengduoZH 已提交
330 331 332
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
333
    Args:
334 335 336 337
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
338 339 340 341
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
342 343 344
    Returns:
       LodTensor|numpy.ndarray
    """
345
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
346 347
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
348
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
349

350
    var = scope.find_var(_to_name_str(name))
351 352 353 354
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
355 356
    tensor = var.get_tensor()
    if return_numpy:
357
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
358 359 360
    return tensor


X
polish  
Xin Pan 已提交
361
def _to_name_str(var):
362 363 364 365 366 367 368 369
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
370
            return str(id(var))
371 372 373 374 375 376 377 378 379 380
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
381
    else:
382
        return _to_str(var)
Q
qiaolongfei 已提交
383 384


385 386 387 388
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
389
def _get_program_cache_key(feed, fetch_list):
390 391 392 393 394 395
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
396
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
397 398 399
    return str(feed_var_names + fetch_var_names)


400
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
414
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
415
            data(core.Place): the place of created tensor
416
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
417 418 419 420

        Returns:
            LoDTensor
        """
421
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
422
    if not isinstance(data, np.ndarray):
423 424 425
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
426 427
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
428 429 430 431 432 433 434 435 436 437 438 439 440
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
441

442
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
443 444 445 446 447
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


448
class FetchHandler(object):
D
Dong Daxiang 已提交
449 450 451
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
452 453
        self.period_secs = period_secs

D
Dong Daxiang 已提交
454 455 456 457 458
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
459 460 461 462

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
463 464 465 466 467 468 469 470
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
471 472 473
""")


Y
Yu Yang 已提交
474
class Executor(object):
475
    """
476 477
    :api_attr: Static Graph

478
    An Executor in Python, supports single/multiple-GPU running,
479
    and single/multiple-CPU running.
C
chengduo 已提交
480 481

    Args:
482 483 484 485 486
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)|None): This parameter represents
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
C
chengduo 已提交
487 488 489

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
490

491
    Examples:
S
Fix doc  
sneaxiy 已提交
492 493
        .. code-block:: python

494 495 496 497 498
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

499 500 501 502 503 504 505
          # Set place explicitly.
          # use_cuda = True
          # place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          # exe = fluid.Executor(place)

          # If you don't set place, PaddlePaddle sets the default device.
          exe = fluid.Executor()
506 507 508 509

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
510
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
528 529 530 531 532
          # NOTE: If you use CPU to run the program or Paddle is
          # CPU version, you need to specify the CPU_NUM, otherwise,
          # fluid will use all the number of the logic core as
          # the CPU_NUM, in that case, the batch size of the input
          # should be greater than CPU_NUM, if not, the process will be
533
          # failed by an exception.
534 535 536 537 538 539

          # Set place explicitly.
          # if not use_cuda:
          #     os.environ['CPU_NUM'] = str(2)

          # If you don't set place and PaddlePaddle is CPU version
540
          os.environ['CPU_NUM'] = str(2)
541 542 543 544 545 546 547

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
548 549
    """

550 551
    def __init__(self, place=None):
        if place is None:
552 553
            expected_place = framework._current_expected_place()
            self.place = expected_place
554 555
        else:
            self.place = place
Q
qiaolongfei 已提交
556
        self.program_caches = dict()
557
        self.ctx_caches = dict()
558 559
        self.scope_caches = dict()
        self.var_caches = dict()
560
        self.pruned_program_caches = dict()
561 562 563
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
564
        self._closed = False
565
        self.pruned_program_scope_caches = dict()
D
dzhwinter 已提交
566

567 568 569
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

570 571 572
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

573 574 575
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
576 577 578 579 580 581
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

582 583 584 585 586 587 588 589 590 591 592 593
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

594 595 596
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

597 598 599
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
625 626 627 628 629 630 631 632 633 634 635
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
636 637 638
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
639 640 641
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
642 643 644 645 646 647 648 649 650 651
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
652 653
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
654 655 656
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
657
                var = global_block.var(feed_target_name)
658 659
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
H
Huihuang Zheng 已提交
660
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
661 662 663 664 665 666 667 668
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
669
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
670 671 672
        ]
        return outs

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

        for item in fetch_list:
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
826 827 828 829 830 831
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
832 833
    def close(self):
        """
C
chengduo 已提交
834 835 836
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
837

C
chengduo 已提交
838 839
        Returns:
            None
840 841 842 843 844 845 846 847 848 849

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
850
        """
851 852
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
853
            self._closed = True
Y
Yancey1989 已提交
854

X
fix  
Xin Pan 已提交
855
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
856
                      return_numpy, return_merged):
857
        from paddle.optimizer.lr_scheduler import _LRScheduler
858
        exe = program._executor
H
Huihuang Zheng 已提交
859 860 861 862 863
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
864 865 866 867
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
868
                var = global_block.var(feed_name) if need_check_feed else None
869
                if not isinstance(feed_tensor, core.LoDTensor):
870
                    # always set to CPU place, since the tensor need to be split
871
                    # it is fast in CPU
872 873 874
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
875
                if need_check_feed:
876
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
877 878
                feed_tensor_dict[feed_name] = feed_tensor

879
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
880 881 882 883 884 885 886 887 888
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
889 890
                    var = global_block.var(
                        feed_name) if need_check_feed else None
891
                    if not isinstance(tensor, core.LoDTensor):
892 893 894
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
895 896
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
897 898
                    res_dict[feed_name] = tensor
                res.append(res_dict)
899
            exe.feed_tensors_into_local_scopes(res)
900

901 902 903 904 905 906 907 908 909 910
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
            assert isinstance(lr_sheduler, _LRScheduler), "must be _LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
            exe.feed_and_split_tensor_into_local_scopes({
                lr_sheduler._var_name: lr_tensor
            })

X
polish  
Xin Pan 已提交
911
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
912
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
913
        return as_numpy(tensors) if return_numpy else tensors
914

Y
Yu Yang 已提交
915
    def run(self,
Y
Yu Yang 已提交
916
            program=None,
917 918
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
919
            feed_var_name='feed',
Y
Yu Yang 已提交
920
            fetch_var_name='fetch',
D
dzhwinter 已提交
921
            scope=None,
922
            return_numpy=True,
Z
Zhen Wang 已提交
923
            use_program_cache=False,
924 925
            return_merged=True,
            use_prune=False):
926
        """
C
chengduo 已提交
927 928 929 930 931
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
932

C
chengduo 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
949
                after the model runs. The default is None. 
C
chengduo 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
Z
Zhen Wang 已提交
964 965 966
            return_merged(bool): This parameter indicates whether fetched variables (the variables
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
967 968 969 970 971 972 973 974
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
975 976 977 978 979 980 981
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
1000

Z
Zhen Wang 已提交
1001
        Examples 1:
1002 1003 1004 1005 1006 1007 1008 1009 1010
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
1011
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
1012 1013 1014 1015
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)
1016 1017
              i = fluid.layers.zeros(shape=[1], dtype='int64')
              array = fluid.layers.array_write(x=loss, i=i)
1018 1019 1020 1021 1022

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
1023 1024 1025 1026
              loss_val, array_val = exe.run(feed={'X': x},
                                            fetch_list=[loss.name, array.name])
              print(array_val)
              # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

        Examples 2:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # First create the Executor.
                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)

                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                class_dim = 2
                prediction = fluid.layers.fc(input=data, size=class_dim)
                loss = fluid.layers.mean(prediction)
                adam = fluid.optimizer.Adam()
                adam.minimize(loss)

                # Run the startup program once and only once.
                exe.run(fluid.default_startup_program())
                build_strategy = fluid.BuildStrategy()
                binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name, build_strategy=build_strategy)
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
                unmerged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=False)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
                print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
                merged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=True)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
                print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
                print(merged_prediction)

                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1087
        """
C
chengduo 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1097
                use_program_cache=use_program_cache,
1098
                use_prune=use_prune,
Z
Zhen Wang 已提交
1099
                return_merged=return_merged)
C
chengduo 已提交
1100
        except Exception as e:
1101
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1102 1103

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1104
                  fetch_var_name, scope, return_numpy, use_program_cache,
1105
                  return_merged, use_prune):
Y
Yancey1989 已提交
1106 1107 1108
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1109
        use_default_main_program = program is None
1110 1111
        if program is None:
            program = default_main_program()
C
chengduo 已提交
1112
        if isinstance(program, Program) and \
1113
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1114
            if use_default_main_program:
1115 1116 1117 1118 1119 1120 1121 1122
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1123
            warnings.warn(error_info)
1124

1125 1126
        if scope is None:
            scope = global_scope()
1127 1128

        if fetch_list is not None:
1129 1130 1131
            if isinstance(fetch_list, Variable) or isinstance(
                    fetch_list, str) or isinstance(fetch_list,
                                                   six.string_types):
1132 1133 1134 1135 1136 1137
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
1138
            fetch_list = []
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1172
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
                    varobj._stop_gradient == True and \
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1194 1195
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1196
        # For backward compatibility, run directly.
1197
        if not compiled:
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1215
            return self._run_program(
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1226 1227 1228
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1229
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1230
                program,
1231 1232 1233
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1234
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1235 1236
                return_numpy=return_numpy,
                return_merged=return_merged)
1237

C
chengduo 已提交
1238
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1239
                     fetch_var_name, scope, return_numpy, use_program_cache):
1240
        from paddle.optimizer.lr_scheduler import _LRScheduler
1241 1242
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1243 1244 1245 1246
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1247
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1248 1249 1250
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1251

1252
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1253
        if not isinstance(program, Program):
D
dzhwinter 已提交
1254 1255 1256
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1257

1258
        if use_program_cache:
1259
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1260
            cached_program = self._get_program_cache(cache_key)
1261
            cached_ctx = self._get_ctx_cache(cache_key)
1262
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1263 1264 1265 1266 1267 1268 1269 1270
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1271
                fetch_list_str = list(map(_to_name_str, fetch_list))
1272
                cached_ctx = self._default_executor.prepare(
1273 1274 1275 1276 1277 1278 1279
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1280 1281
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1282
                self._add_ctx_cache(cache_key, cached_ctx)
1283
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1284
            program = cached_program
1285
            ctx = cached_ctx
1286
            scope = cached_scope
1287
        else:
Q
Qiao Longfei 已提交
1288 1289 1290 1291 1292 1293 1294 1295
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
                              _LRScheduler), "must be _LRScheduler"
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1306
        if not use_program_cache:
C
chengduo 已提交
1307 1308
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
1309
        else:
1310 1311
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1312
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1313
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1314
        if return_numpy:
1315 1316 1317
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1318

X
Xin Pan 已提交
1319 1320
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1321

1322 1323
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1324
            fout.write(str(trainer))
1325
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1326 1327 1328
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1345 1346 1347 1348 1349 1350 1351 1352 1353
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1354 1355 1356 1357 1358 1359
        is_heter = 0
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
            if program._fleet_opt("trainer", "") == "HeterXpuTrainer":
                is_heter = 1
D
dongdaxiang 已提交
1360 1361 1362 1363
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1364 1365 1366
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1367
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1368 1369 1370 1371 1372
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1373
        if not compiled:
H
hutuxian 已提交
1374 1375 1376 1377 1378 1379
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1380
                trainer._set_thread_barrier(program._is_distributed)
1381
            trainer._set_program(program)
T
Thunderbrook 已提交
1382 1383
            if is_heter:
                trainer._set_heter_info(ret)
1384
        else:
H
hutuxian 已提交
1385 1386 1387 1388 1389 1390
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1391
            trainer._set_program(program.program)
H
hutuxian 已提交
1392

1393
        if thread <= 0:
D
dongdaxiang 已提交
1394 1395
            if dataset.thread_num <= 0:
                raise RuntimeError(
1396 1397
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1398
            else:
1399
                trainer._set_thread(dataset.thread_num)
1400
        else:
1401
            trainer._set_thread(thread)
H
hutuxian 已提交
1402

1403 1404
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1405
        return scope, trainer
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1437 1438 1439 1440 1441 1442 1443 1444

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1445 1446 1447 1448
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1449 1450 1451 1452 1453

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1454
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1455 1456 1457 1458

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1459 1460 1461 1462 1463 1464
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1465
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1466 1467 1468
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1469
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1470 1471

        dataset._dynamic_adjust_after_train()
1472
        dataset._finish_to_run()
T
tangwei12 已提交
1473

1474 1475
        return None

1476 1477 1478 1479 1480
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1481 1482 1483
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1484 1485
                           print_period=100,
                           fetch_handler=None):
1486
        """
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1498

1499 1500
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1501
                if not provided, then default_main_program (not compiled) will be used.
1502
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1503 1504
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1505
            scope(Scope): the scope used to run this program, you can switch it to different scope
1506 1507 1508
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1509
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1510 1511
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1512 1513
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1514
            fetch_handler(FetchHandler): a user define class for fetch output.
1515

1516 1517 1518 1519
        Returns:
            None

        Examples:
1520 1521

            .. code-block:: python
1522

1523
                import paddle.fluid as fluid
1524 1525

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1526
                exe = fluid.Executor(place)
1527 1528
                x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
1529 1530
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1531 1532
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1533 1534 1535 1536
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1537

1538
        """
1539 1540 1541
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1542

T
Thunderbrook 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

1597 1598 1599 1600 1601 1602 1603 1604
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1605 1606
                           print_period=100,
                           fetch_handler=None):
1607 1608 1609 1610 1611 1612 1613 1614
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1615

1616 1617 1618 1619
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1620
                if not provided, then default_main_program (not compiled) will be used.
1621
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1622 1623
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1624
            scope(Scope): the scope used to run this program, you can switch it to different scope
1625 1626 1627
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1628
            debug(bool): whether a user wants to run train_from_dataset 
1629 1630 1631 1632 1633
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1634
            fetch_handler(FetchHandler): a user define class for fetch output.
1635 1636 1637

        Returns:
            None
1638
        
1639
        Examples:
1640
        
1641 1642 1643
            .. code-block:: python

              import paddle.fluid as fluid
1644 1645

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1646
              exe = fluid.Executor(place)
1647 1648
              x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
1649 1650
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1651 1652
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1653 1654 1655 1656
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1657 1658

        """
1659 1660 1661
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)