elementwise.h 30.6 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/function_traits.h"
20
#include "paddle/pten/core/dense_tensor.h"
21
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
22 23 24

namespace pten {

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
namespace kps = paddle::operators::kernel_primitives;
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };

/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
    typename std::conditional_t<Num == 1, T, paddle::framework::Array<T, Num>>;

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result);
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
        result, args, func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], args[2], func);
  }
};

template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
  __device__ __forceinline__ void operator()(
      paddle::framework::Array<OutT *, NumOuts> outs,
      ConditionalT<OutT, NumOuts> src[VecSize],
      int block_offset,
      int num) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
      kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
          outs[i] + block_offset, dst[i], num);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, 1> {
  __device__ __forceinline__ void operator()(
      paddle::framework::Array<OutT *, 1> outs,
      OutT src[VecSize],
      int block_offset,
      int num) {
    kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
        outs[0] + block_offset, src, num);
  }
};

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
    const paddle::framework::Array<const InT *__restrict__, Arity> &in,
    paddle::framework::Array<OutT *, NumOuts> outs,
    int num,
    int data_offset,
    Functor func) {
  InT args[Arity][VecSize];
  ConditionalT<OutT, NumOuts> result[VecSize];

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    kps::ReadData<InT, VecSize, 1, 1, IsBoundary>(
        args[i], in[i] + data_offset, num);
  }

  constexpr bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
                             ConditionalT<OutT, NumOuts>,
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, data_offset, num);
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
__global__ void VectorizedElementwiseKernel(
    paddle::framework::Array<const InT *__restrict__, Arity> ins,
    paddle::framework::Array<OutT *, NumOuts> outs,
    int size,
    int main_offset,
    Functor func) {
  int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
  for (; data_offset < main_offset; data_offset += stride) {
    VectorizedElementwiseKernelImpl<InT,
                                    OutT,
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
        ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
  }

  int num = size - data_offset;
  if (num > 0) {
    VectorizedElementwiseKernelImpl<InT,
                                    OutT,
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    true>(ins, outs, num, data_offset, func);
  }
}

template <typename InT, typename OutT>
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
  int vec_size = 4;
  for (auto iter = ins.begin(); iter != ins.end(); ++iter) {
    vec_size = std::min<int>(
        vec_size, paddle::platform::GetVectorizedSize((*iter)->data<InT>()));
  }
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
    vec_size = std::min<int>(
        vec_size, paddle::platform::GetVectorizedSize((*iter)->data<OutT>()));
  }
  return vec_size;
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
                           const std::vector<const DenseTensor *> &ins,
                           std::vector<DenseTensor *> *outs,
                           Functor func) {
  auto numel = ins[0]->numel();
  int block_size = funcs::GetThreadsConfig(ctx, numel, VecSize);
  int grid_size =
      ((numel + VecSize - 1) / VecSize + block_size - 1) / block_size;
  auto stream = ctx.stream();
  paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
  paddle::framework::Array<OutT *, NumOuts> outs_data;

  for (int i = 0; i < Arity; ++i) {
    ins_data[i] = ins[i]->data<InT>();
  }
  for (int i = 0; i < NumOuts; ++i) {
    outs_data[i] = (*outs)[i]->mutable_data<OutT>();
  }
#ifdef PADDLE_WITH_XPU2
  block_size = 128;
  grid_size = 8;
  int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
  VectorizedElementwiseKernel<InT,
                              OutT,
                              Functor,
                              Arity,
                              NumOuts,
                              VecSize><<<grid_size, block_size, 0, stream>>>(
      ins_data, outs_data, numel, main_offset, func);
#else
  int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
  VectorizedElementwiseKernel<InT,
                              OutT,
                              Functor,
                              Arity,
                              NumOuts,
                              VecSize><<<grid_size, block_size, 0, stream>>>(
      ins_data, outs_data, numel, main_offset, func);
#endif
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

  // calculate the max vec_size for all ins and outs
  int vec_size = GetVectorizedSizeForTensors<InT, OutT>(ins, *outs);
  switch (vec_size) {
    case 4:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 4>(
          ctx, ins, outs, func);
      break;
    case 2:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 2>(
          ctx, ins, outs, func);
      break;
    case 1:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 1>(
          ctx, ins, outs, func);
      break;
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
                               const paddle::framework::DDim &dims,
                               int axis) {
    const int N = ins.size();
    dim_size = dims.size();
    out_dims = paddle::framework::vectorize<int64_t>(dims);
    in_dims.resize(N);
    for (int j = 0; j < N; ++j) {
      in_dims[j] = paddle::framework::vectorize<int64_t>(ins[j]->dims());
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
432
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
433 434 435 436 437 438 439 440 441 442
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
443
          equal &= in_dims[j][i] == out[i];
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
    const T *__restrict__ src,
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
    bool need_broadcast) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
494
          int NumOuts,
495 496 497
          int VecSize,
          int Rank,
          bool IsBoundary = false>
498
__device__ void ElementwiseBroadcastKernelImpl(
499
    const paddle::framework::Array<const InT *__restrict__, Arity> &ins,
500
    paddle::framework::Array<OutT *, NumOuts> outs,
501 502 503 504 505
    const paddle::framework::Array<bool, Arity> &use_broadcast,
    uint32_t numel,
    const paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        &configs,
    int num,
506
    int block_offset,
507 508
    Functor func) {
  InT args[Arity][VecSize];
509
  ConditionalT<OutT, NumOuts> result[VecSize];
510 511 512 513 514 515 516 517 518 519 520 521

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
522
  constexpr bool kCallElementwiseAny =
523 524
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
525
                             ConditionalT<OutT, NumOuts>,
526 527 528 529
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);
530 531 532

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, block_offset, num);
533 534 535 536 537 538
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
539
          int NumOuts,
540 541
          int VecSize,
          int Rank>
542
__global__ void ElementwiseBroadcastKernel(
543
    paddle::framework::Array<const InT *__restrict__, Arity> ins,
544
    paddle::framework::Array<OutT *, NumOuts> outs,
545 546 547 548
    paddle::framework::Array<bool, Arity> use_broadcast,
    uint32_t numel,
    paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        configs,
549
    int main_offset,
550 551
    int tail_tid,
    Functor func) {
552 553
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
554

555 556 557 558 559 560
#ifdef PADDLE_WITH_XPU2
  for (; block_offset < main_offset; block_offset += stride) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
561
                                   NumOuts,
562 563 564
                                   VecSize,
                                   Rank,
                                   false>(ins,
565
                                          outs,
566 567 568 569 570 571 572 573 574 575 576 577
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  }
  if (block_offset < numel) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
578
                                   NumOuts,
579 580 581
                                   VecSize,
                                   Rank,
                                   true>(
582
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
583
  }
584 585 586 587 588 589
#else
  if (block_offset < main_offset) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
590
                                   NumOuts,
591 592 593
                                   VecSize,
                                   Rank,
                                   false>(ins,
594
                                          outs,
595 596 597 598 599 600 601 602 603 604 605
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  } else {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
606
                                   NumOuts,
607 608 609
                                   VecSize,
                                   Rank,
                                   true>(
610
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
611 612
  }
#endif
613 614 615 616 617 618
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
619
          int NumOuts,
620 621 622 623
          int VecSize,
          int Rank>
void LaunchKernel(const paddle::platform::CUDADeviceContext &ctx,
                  const std::vector<const DenseTensor *> &ins,
624
                  std::vector<DenseTensor *> *outs,
625 626
                  Functor func,
                  DimensionsTransform merge_dims) {
627
  int numel = (*outs)[0]->numel();
628 629 630
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;

631
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
632 633 634 635 636 637
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();

  paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  paddle::framework::Array<bool, Arity> use_broadcast;
  paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
638 639 640 641 642
  paddle::framework::Array<OutT *, NumOuts> outs_data;

  for (int i = 0; i < NumOuts; ++i) {
    outs_data[i] = (*outs)[i]->mutable_data<OutT>();
  }
643 644 645 646 647 648 649 650 651 652 653 654

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
    ins_data[i] = ins[i]->data<InT>();
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }
655

656 657 658 659 660 661 662 663 664
#ifdef PADDLE_WITH_XPU2
  threads = 128;
  blocks = 8;
  main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  tail_tid = numel % (VecSize * threads);
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
665
                             NumOuts,
666 667
                             VecSize,
                             Rank><<<blocks, threads, stream>>>(ins_data,
668
                                                                outs_data,
669 670 671 672 673 674 675 676 677 678 679
                                                                use_broadcast,
                                                                numel,
                                                                configs,
                                                                main_offset,
                                                                tail_tid,
                                                                func);
#else
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
680
                             NumOuts,
681 682 683
                             VecSize,
                             Rank><<<blocks, threads, 0, stream>>>(
      ins_data,
684
      outs_data,
685 686 687 688 689 690 691
      use_broadcast,
      numel,
      configs,
      main_offset,
      tail_tid,
      func);
#endif
692 693
}

694 695 696 697 698 699
template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
700 701 702
void LaunchBroadcastKernelForDifferentVecSize(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
703
    std::vector<DenseTensor *> *outs,
704 705
    int axis,
    Functor func) {
706
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
707

708 709 710 711
#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                            \
  case rank: {                                                       \
    LaunchKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                           \
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.\n",
          merge_dims.dim_size,
          paddle::framework::DDim::kMaxRank));
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

734 735 736 737 738
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
void LaunchBroadcastElementwiseCudaKernel(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
756
  PADDLE_ENFORCE_LE(kArity,
L
limingshu 已提交
757
                    3,
758
                    paddle::platform::errors::InvalidArgument(
759 760
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
761
                        kArity));
762 763 764 765 766 767 768
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
769
  int in_vec_size = 4;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, but "
              "%dth output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
          paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
          out_vec_size);
    }
  } else {
    out_vec_size =
        paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
  }

789 790
  for (auto *in : ins) {
    auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
791 792 793
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
794 795 796 797 798
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
799 800 801 802 803 804
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               4>(ctx, ins, outs, axis, func);
805 806 807
      break;
    }
    case 2: {
808 809 810 811 812 813
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               2>(ctx, ins, outs, axis, func);
814 815 816
      break;
    }
    case 1: {
817 818 819 820 821 822
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               1>(ctx, ins, outs, axis, func);
823 824 825 826 827 828 829 830 831 832
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void LaunchElementwiseCudaKernel(
    const paddle::platform::CUDADeviceContext &cuda_ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  std::vector<int> dims_size;
  bool no_broadcast_flag = true;
  for (auto *in : ins) {
    no_broadcast_flag &= ins[0]->dims() == in->dims();
    dims_size.emplace_back(in->dims().size());
  }
  if (no_broadcast_flag) {
    LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
        cuda_ctx, ins, outs, func);
  } else {
    axis = axis == -1
               ? *std::max_element(dims_size.begin(), dims_size.end()) -
                     *std::min_element(dims_size.begin(), dims_size.end())
               : axis;
    LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
        cuda_ctx, ins, outs, axis, func);
  }
}

863
}  // namespace pten