CTCErrorEvaluator.cpp 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Evaluator.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
C
caoying03 已提交
17
#include "paddle/utils/StringUtil.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23

namespace paddle {

/**
 * calculate sequence-to-sequence edit distance
 */
C
caoying03 已提交
24
class CTCErrorEvaluator : public Evaluator {
Z
zhangjinchao01 已提交
25 26 27 28 29
private:
  MatrixPtr outActivations_;
  int numTimes_, numClasses_, numSequences_, blank_;
  real deletions_, insertions_, substitutions_;
  int seqClassficationError_;
C
caoying03 已提交
30
  mutable std::unordered_map<std::string, real> evalResults_;
Z
zhangjinchao01 已提交
31 32 33 34 35 36

  std::vector<int> path2String(const std::vector<int>& path) {
    std::vector<int> str;
    str.clear();
    int prevLabel = -1;
    for (std::vector<int>::const_iterator label = path.begin();
37 38
         label != path.end();
         label++) {
Z
zhangjinchao01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
      if (*label != blank_ &&
          (str.empty() || *label != str.back() || prevLabel == blank_)) {
        str.push_back(*label);
      }
      prevLabel = *label;
    }
    return str;
  }

  std::vector<int> bestLabelSeq() {
    std::vector<int> path;
    path.clear();
    real* acts = outActivations_->getData();
    for (int i = 0; i < numTimes_; ++i) {
      path.push_back(std::max_element(acts + i * numClasses_,
                                      acts + (i + 1) * numClasses_) -
                     (acts + i * numClasses_));
    }
    return path2String(path);
  }

  /* "sp, dp, ip" is the weighting parameter of "substitution, deletion,
   * insertion"
   * in edit-distance error */
63 64 65 66 67
  real stringAlignment(std::vector<int>& gtStr,
                       std::vector<int>& recogStr,
                       bool backtrace = true,
                       real sp = 1.0,
                       real dp = 1.0,
Z
zhangjinchao01 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                       real ip = 1.0) {
    std::vector<std::vector<int>> matrix;
    int substitutions, deletions, insertions;
    real distance;
    int n = gtStr.size();
    int m = recogStr.size();

    if (n == 0) {
      substitutions = 0;
      deletions = 0;
      insertions = m;
      distance = m;
    } else if (m == 0) {
      substitutions = 0;
      deletions = n;
      insertions = 0;
      distance = n;
    } else {
      substitutions = 0;
      deletions = 0;
      insertions = 0;
      distance = 0;
      // initialize the matrix
      matrix.resize(n + 1);
      for (int i = 0; i < n + 1; ++i) {
        matrix[i].resize(m + 1);
        for (int j = 0; j < m + 1; ++j) {
          matrix[i][j] = 0;
        }
      }
      for (int i = 0; i < n + 1; ++i) {
        matrix[i][0] = i;
      }
      for (int j = 0; j < m + 1; ++j) {
        matrix[0][j] = j;
      }

      // calculate the insertions, substitutions and deletions
      for (int i = 1; i < n + 1; ++i) {
        int s_i = gtStr[i - 1];
        for (int j = 1; j < m + 1; ++j) {
          int t_j = recogStr[j - 1];
          int cost = (s_i == t_j) ? 0 : 1;
          const int above = matrix[i - 1][j];
          const int left = matrix[i][j - 1];
          const int diag = matrix[i - 1][j - 1];
          const int cell = std::min(above + 1, std::min(left + 1, diag + cost));
          matrix[i][j] = cell;
        }
      }

      if (backtrace) {
        size_t i = n;
        size_t j = m;
        substitutions = 0;
        deletions = 0;
        insertions = 0;

        while (i != 0 && j != 0) {
          if (matrix[i][j] == matrix[i - 1][j - 1]) {
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j - 1] + 1) {
            ++substitutions;
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j] + 1) {
            ++deletions;
            --i;
          } else {
            ++insertions;
            --j;
          }
        }
        while (i != 0) {
          ++deletions;
          --i;
        }
        while (j != 0) {
          ++insertions;
          --j;
        }
        int diff = substitutions + deletions + insertions;
        if (diff != matrix[n][m]) {
          LOG(ERROR) << "Found path with distance " << diff
                     << " but Levenshtein distance is " << matrix[n][m];
        }

        distance = (sp * substitutions) + (dp * deletions) + (ip * insertions);
      } else {
        distance = (real)matrix[n][m];
      }
    }
    real maxLen = std::max(m, n);
    deletions_ += deletions / maxLen;
    insertions_ += insertions / maxLen;
    substitutions_ += substitutions / maxLen;

    if (distance != 0) {
      seqClassficationError_ += 1;
    }

    return distance / maxLen;
  }

173 174
  real editDistance(
      real* output, int numTimes, int numClasses, int* labels, int labelsLen) {
Z
zhangjinchao01 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
    numTimes_ = numTimes;
    numClasses_ = numClasses;
    blank_ = numClasses_ - 1;
    outActivations_ = Matrix::create(output, numTimes, numClasses);
    std::vector<int> recogStr, gtStr;
    recogStr = bestLabelSeq();
    for (int i = 0; i < labelsLen; ++i) {
      gtStr.push_back(labels[i]);
    }

    return stringAlignment(gtStr, recogStr);
  }

C
caoying03 已提交
188 189 190 191 192 193 194 195 196 197 198 199
  void storeLocalValues() const {
    evalResults_["error"] = numSequences_ ? totalScore_ / numSequences_ : 0;
    evalResults_["deletion_error"] =
        numSequences_ ? deletions_ / numSequences_ : 0;
    evalResults_["insertion_error"] =
        numSequences_ ? insertions_ / numSequences_ : 0;
    evalResults_["substitution_error"] =
        numSequences_ ? substitutions_ / numSequences_ : 0;
    evalResults_["sequence_error"] =
        (real)seqClassficationError_ / numSequences_;
  }

Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
public:
  CTCErrorEvaluator()
      : numTimes_(0),
        numClasses_(0),
        numSequences_(0),
        blank_(0),
        deletions_(0),
        insertions_(0),
        substitutions_(0),
        seqClassficationError_(0) {}

  virtual real evalImp(std::vector<Argument>& arguments) {
    CHECK_EQ(arguments.size(), (size_t)2);
    Argument output, label;
214 215 216
    output.resizeAndCopyFrom(arguments[0], false, HPPL_STREAM_DEFAULT);
    label.resizeAndCopyFrom(arguments[1], false, HPPL_STREAM_DEFAULT);
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
217 218 219 220 221 222 223 224 225 226
    CHECK(label.sequenceStartPositions);
    CHECK(label.ids);
    size_t numSequences = label.sequenceStartPositions->getSize() - 1;
    const int* labelStarts = label.sequenceStartPositions->getData(false);
    const int* outputStarts = output.sequenceStartPositions->getData(false);
    real totalErr = 0;
    for (size_t i = 0; i < numSequences; ++i) {
      real err = 0;
      err = editDistance(
          output.value->getData() + output.value->getWidth() * outputStarts[i],
227 228
          outputStarts[i + 1] - outputStarts[i],
          output.value->getWidth(),
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
          label.ids->getData() + labelStarts[i],
          labelStarts[i + 1] - labelStarts[i]);

      totalErr += err;
    }

    return totalErr;
  }

  virtual void eval(const NeuralNetwork& nn) {
    Evaluator::eval(nn);
    std::vector<Argument> arguments;
    arguments.reserve(config_.input_layers_size());
    for (const std::string& name : config_.input_layers()) {
      arguments.push_back(nn.getLayer(name)->getOutput());
    }
245 246 247
  }

  virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
Z
zhangjinchao01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260
    numSequences_ += arguments[1].getNumSequences();
  }

  virtual void start() {
    Evaluator::start();
    numSequences_ = 0;
    blank_ = 0;
    deletions_ = 0;
    insertions_ = 0;
    substitutions_ = 0;
    seqClassficationError_ = 0;
  }

Y
Yu Yang 已提交
261
  virtual void printStats(std::ostream& os) const {
C
caoying03 已提交
262
    storeLocalValues();
C
caoying03 已提交
263
    os << config_.name() << " error = " << evalResults_["error"];
C
caoying03 已提交
264 265 266 267
    os << " deletions error = " << evalResults_["deletion_error"];
    os << " insertions error = " << evalResults_["insertion_error"];
    os << " substitution error = " << evalResults_["substitution_error"];
    os << " sequence error = " << evalResults_["sequence_error"];
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  }

  virtual void distributeEval(ParameterClient2* client) {
    double buf[6] = {totalScore_,
                     (double)deletions_,
                     (double)insertions_,
                     (double)substitutions_,
                     (double)seqClassficationError_,
                     (double)numSequences_};
    client->reduce(buf, buf, 6, FLAGS_trainer_id, 0);
    totalScore_ = buf[0];
    deletions_ = (real)buf[1];
    insertions_ = (real)buf[2];
    substitutions_ = (real)buf[3];
    seqClassficationError_ = (int)buf[4];
    numSequences_ = (int)buf[5];
  }
C
caoying03 已提交
285 286 287 288 289 290 291 292 293 294 295 296

  void getNames(std::vector<std::string>* names) {
    storeLocalValues();
    names->reserve(names->size() + evalResults_.size());
    for (auto it = evalResults_.begin(); it != evalResults_.end(); ++it) {
      names->push_back(config_.name() + "." + it->first);
    }
  }

  real getValue(const std::string& name, Error* err) const {
    storeLocalValues();

C
caoying03 已提交
297 298 299
    std::vector<std::string> buffers;
    paddle::str::split(name, '.', &buffers);
    auto it = evalResults_.find(buffers[buffers.size() - 1]);
C
caoying03 已提交
300 301 302 303 304 305 306 307 308

    if (it == evalResults_.end()) {
      *err = Error("Evaluator does not have the key %s", name.c_str());
      return 0.0f;
    }

    return it->second;
  }

C
caoying03 已提交
309
  std::string getType(const std::string& name, Error* err) const {
C
caoying03 已提交
310 311 312 313
    this->getValue(name, err);
    if (!err->isOK()) {
      return "";
    }
C
caoying03 已提交
314 315
    return "ctc_edit_distance";
  }
Z
zhangjinchao01 已提交
316 317 318 319 320
};

REGISTER_EVALUATOR(ctc_edit_distance, CTCErrorEvaluator);

}  // namespace paddle