squared_l2_norm_op.h 2.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math/squared_l2_norm.h"
19 20 21 22 23

namespace paddle {
namespace operators {

// Out = sum(square(X))
Q
QI JUN 已提交
24
template <typename DeviceContext, typename T>
25 26 27
class SquaredL2NormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
S
sneaxiy 已提交
28 29 30
    const framework::Tensor *x = context.Input<framework::Tensor>("X");
    const auto *x_ptr = x->data<T>();
    auto numel = x->numel();
31

S
sneaxiy 已提交
32 33
    framework::Tensor *out = context.Output<framework::Tensor>("Out");
    auto *out_ptr = out->mutable_data<T>(context.GetPlace());
34

35 36 37 38
    math::SquaredL2Norm(context.template device_context<DeviceContext>(),
                        x_ptr,
                        out_ptr,
                        numel);
39 40 41 42
  }
};

// dX = X
Q
QI JUN 已提交
43
template <typename DeviceContext, typename T>
44 45 46 47 48 49
class SquaredL2NormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const framework::Tensor *X = context.Input<framework::Tensor>("X");
    const framework::Tensor *dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
50
    PADDLE_ENFORCE_EQ(
51 52
        dOut->numel(),
        1,
53 54
        platform::errors::InvalidArgument(
            "Input(GRAD@Out) of SquaredL2NormGradOP should be a scalar."));
55 56 57 58 59 60 61
    framework::Tensor *dX =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto dout = framework::EigenVector<T>::Flatten(*dOut);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
62 63
    auto *place =
        context.template device_context<DeviceContext>().eigen_device();
64 65

    Eigen::DSizes<int, 1> x_dsize(X->numel());
Q
QI JUN 已提交
66
    dx.device(*place) = (dout.broadcast(x_dsize) * x) * static_cast<T>(2.0);
67 68 69 70 71
  }
};

}  // namespace operators
}  // namespace paddle