PaddleAPI.h 24.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stddef.h>
#include <stdint.h>
19
#include <stdexcept>
Y
Yu Yang 已提交
20
#include <string>
Z
zhangjinchao01 已提交
21
#include <vector>
L
liaogang 已提交
22
#include "paddle/utils/Common.h"
Z
zhangjinchao01 已提交
23 24
#include "paddle/utils/GlobalConstants.h"

L
lipeng17 已提交
25
/// Import PaddlePaddle's enumeration into global namespace.
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
using namespace paddle::enumeration_wrapper;  // NOLINT

/**
 * @brief Initialize paddle.
 *
 * In python, this method should be invoked as
 * @code
 *  import sys
 *  import paddle
 *  paddle.initPaddle(sys.argv)
 *  or you can change arguments as any list of str.
 * @endcode
 */
void initPaddle(int argc, char** argv);

41
/// Return FLAGS_use_gpu
42
bool isUsingGpu();
43

44 45 46
/// Set the Flags_use_gpu to the given parameter
void setUseGpu(bool useGpu);

Z
zhangjinchao01 已提交
47 48 49 50 51 52 53 54 55 56
/// Return true if this py_paddle is compiled in GPU Version
bool isGpuVersion();

/// The Error of IO Operation. Such as file not found, etc.
class IOError {};

/// Out of range error
class RangeError {};

/// Not support Error, such as access GPU memory directly, etc.
57 58
class UnsupportError : public std::runtime_error {
public:
59 60
  UnsupportError() : std::runtime_error(" "){};
  UnsupportError(const std::string& message) : std::runtime_error(message){};
61
};
Z
zhangjinchao01 已提交
62 63 64

/// This type will map to python's list of float.
struct FloatArray {
L
liaogang 已提交
65
  const float* buf;
Z
zhangjinchao01 已提交
66 67
  const size_t length;
  bool needFree;  // true if the buf is dynamic alloced.
L
liaogang 已提交
68
  FloatArray(const float* b, const size_t l);
Z
zhangjinchao01 已提交
69 70 71 72 73 74 75 76 77 78 79 80
};

/// This type will map to python's list of int
struct IntArray {
  const int* buf;
  const size_t length;
  bool needFree;
  IntArray(const int* b, const size_t l, bool f = false);
};

/// This type will map to python's list of (int, float)
struct IntWithFloatArray {
L
liaogang 已提交
81
  const float* valBuf;
Z
zhangjinchao01 已提交
82 83 84
  const int* idxBuf;
  const size_t length;
  bool needFree;
L
liaogang 已提交
85
  IntWithFloatArray(const float* v, const int* i, size_t l, bool f = false);
Z
zhangjinchao01 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
};

enum SparseValueType { SPARSE_NON_VALUE = 0, SPARSE_VALUE = 1 };

enum SparseFormatType { SPARSE_CSR = 0, SPARSE_CSC = 1 };

/**
 * In Python, -1UL is hard to write. So define a const value used by python
 * side.
 */
const size_t NO_SPARSE_ID = -1UL;

struct MatrixPrivate;
class Matrix {
  Matrix();  // User Cannot Create Matrix.
101
  DISABLE_COPY(Matrix);
Z
zhangjinchao01 已提交
102 103 104 105 106 107 108 109
  static Matrix* createByPaddleMatrixPtr(void* sharedPtr);

public:
  virtual ~Matrix();

  /**
   * Create A Matrix with height,width, which is filled by zero.
   */
110 111
  static Matrix* createZero(size_t height,
                            size_t width,
112
                            bool useGpu = isUsingGpu());
Z
zhangjinchao01 已提交
113 114 115 116 117 118 119 120 121 122

  /**
   * Create Sparse Matrix.
   *
   * After create sparse, sparseCopyFrom can be used to fill matrix.
   *
   * @param nnz  Number of non zero values.
   *
   * @note the default sparse type is SPARSE_CSR.
   */
123 124 125 126 127
  static Matrix* createSparse(size_t height,
                              size_t width,
                              size_t nnz,
                              bool isNonVal = true,
                              bool trans = false,
128
                              bool useGpu = isUsingGpu());
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135

  /**
   * Create Dense Matrix.
   *
   * @param data  list of float should be passed in python.
   * @note        the value will be copy into a new matrix.
   */
136 137 138 139 140 141 142 143 144 145 146
  static Matrix* createDense(const std::vector<float>& data,
                             size_t height,
                             size_t width,
                             bool useGpu = isUsingGpu());

  static Matrix* createDenseFromNumpy(
      float* data,
      int dim1,
      int dim2,
      bool copy = true,
      bool useGpu = isUsingGpu()) throw(UnsupportError);
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153 154

  /**
   *  Create Cpu Dense Matrix from numpy matrix, dtype=float32
   *
   *  @param data  a numpy matrix.
   *  @param dim1  dimension of data.
   *  @param dim2  dimension of data.
   *  @param copy  true if copy into a new matrix, false will create
X
xuwei06 已提交
155 156 157 158
   *               matrix inplace. copy = false should be used with extreme
   *               care because Matrix will share the memory with the given
   *               numpy array. If the numpy array object is no longer valid,
   *               the memory space will not be usable.
Z
zhangjinchao01 已提交
159
   */
160 161 162
  static Matrix* createCpuDenseFromNumpy(float* data,
                                         int dim1,
                                         int dim2,
X
xuwei06 已提交
163
                                         bool copy = true);
Z
zhangjinchao01 已提交
164 165

  /// Create Gpu Dense Matrix from numpy matrix, dtype=float32
L
liaogang 已提交
166
  static Matrix* createGpuDenseFromNumpy(float* data, int dim1, int dim2);
Z
zhangjinchao01 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  /**
   * Cast to numpy matrix.
   *
   * @note    This method take no parameter in python.
   * @note    This method in python will return a numpy matrix, not void.
   * @note    Only CpuDenseMatrix is supported.
   *
   * Example:
   * @code
   * import paddle
   * m = paddle.Matrix.createZero(10,2)
   * numpy_mat = m.toNumpyMat()
   * @endcode
   */
182 183
  void toNumpyMatInplace(float** view_data,
                         int* dim1,
Z
zhangjinchao01 已提交
184 185 186
                         int* dim2) throw(UnsupportError);

  /// Copy To numpy mat.
187 188
  void copyToNumpyMat(float** view_m_data,
                      int* dim1,
Z
zhangjinchao01 已提交
189 190 191
                      int* dim2) throw(UnsupportError);

  /// Copy From Numpy Mat
L
liaogang 已提交
192
  void copyFromNumpyMat(float* data, int dim1, int dim2) throw(UnsupportError,
Z
zhangjinchao01 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                                                               RangeError);

  /// return true if this matrix is sparse.
  bool isSparse() const;

  SparseValueType getSparseValueType() const throw(UnsupportError);

  SparseFormatType getSparseFormat() const throw(UnsupportError);

  IntArray getSparseRowCols(size_t i) const throw(UnsupportError, RangeError);

  IntWithFloatArray getSparseRowColsVal(size_t i) const
      throw(UnsupportError, RangeError);

  size_t getHeight() const;

  size_t getWidth() const;

L
liaogang 已提交
211
  float get(size_t x, size_t y) const throw(RangeError);
Z
zhangjinchao01 已提交
212

L
liaogang 已提交
213
  void set(size_t x, size_t y, float val) throw(RangeError, UnsupportError);
Z
zhangjinchao01 已提交
214 215 216 217 218 219 220 221 222 223 224

  /// return type is list of float
  FloatArray getData() const;

  /**
   * Copy from rows, cols, values.
   *
   * if sparse_nonvalue, the values should be []
   */
  void sparseCopyFrom(const std::vector<int>& rows,
                      const std::vector<int>& cols,
L
liaogang 已提交
225 226
                      const std::vector<float>& values =
                          std::vector<float>()) throw(UnsupportError);
Z
zhangjinchao01 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240

  bool isGpu() const;

private:
  void* getSharedPtr() const;

  MatrixPrivate* m;
  friend class Trainer;
  friend class GradientMachine;
  friend class Arguments;
};

struct VectorPrivate;
class Vector {
241
  DISABLE_COPY(Vector);
Z
zhangjinchao01 已提交
242 243 244 245 246 247 248 249 250
  Vector();
  static Vector* createByPaddleVectorPtr(void* ptr);

  void* getSharedPtr();

public:
  ~Vector();

  /// Create Vector filled with zero.
251
  static Vector* createZero(size_t sz, bool useGpu = isUsingGpu());
Z
zhangjinchao01 已提交
252 253 254 255 256 257

  /**
   * Create Vector from list of float.
   *
   * It will create a new vector, and copy data into it.
   */
258
  static Vector* create(const std::vector<float>& data,
259
                        bool useGpu = isUsingGpu());
Z
zhangjinchao01 已提交
260

261 262 263 264 265
  static Vector* createVectorFromNumpy(
      float* data,
      int dim,
      bool copy = true,
      bool useGpu = isUsingGpu()) throw(UnsupportError);
Z
zhangjinchao01 已提交
266 267 268 269 270
  /**
   * Create Cpu Vector from numpy array, which dtype=float32
   *
   * If copy is false, it will create vector inplace.
   */
271 272
  static Vector* createCpuVectorFromNumpy(float* data,
                                          int dim,
X
xuwei06 已提交
273
                                          bool copy = true);
Z
zhangjinchao01 已提交
274 275

  /// Create Gpu Vector from numpy array, which dtype=float32
L
liaogang 已提交
276
  static Vector* createGpuVectorFromNumpy(float* data, int dim);
Z
zhangjinchao01 已提交
277

X
xuwei06 已提交
278 279 280 281 282 283 284
  /**
   * copy from another vector
   * throw(RangeError) if size of src vector is different from size of this
   * vector
   */
  void copyFrom(Vector* src) throw(RangeError);

Z
zhangjinchao01 已提交
285
  /// Cast to numpy array inplace.
L
liaogang 已提交
286
  void toNumpyArrayInplace(float** view_data, int* dim1) throw(UnsupportError);
Z
zhangjinchao01 已提交
287 288

  /// Copy to numpy array.
L
liaogang 已提交
289
  void copyToNumpyArray(float** view_m_data, int* dim1);
Z
zhangjinchao01 已提交
290 291

  /// Copy from numpy array.
L
liaogang 已提交
292
  void copyFromNumpyArray(float* data, int dim);
Z
zhangjinchao01 已提交
293 294

  /// __getitem__ in python
L
liaogang 已提交
295
  float get(const size_t idx) const throw(RangeError, UnsupportError);
Z
zhangjinchao01 已提交
296 297

  /// __setitem__ in python
L
liaogang 已提交
298
  void set(const size_t idx, float val) throw(RangeError, UnsupportError);
Z
zhangjinchao01 已提交
299 300 301 302

  /// Return is GPU vector or not.
  bool isGpu() const;

303 304 305
  /// Return a list of float, the memory is alloced and copied.
  FloatArray getData() const;

Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  /// __len__ in python
  size_t getSize() const;

private:
  VectorPrivate* m;

private:
  friend class Parameter;
  friend class ParameterOptimizer;
  friend struct ParameterTraverseCallbackPrivate;
};

struct IVectorPrivate;
class IVector {
  IVector();
321
  DISABLE_COPY(IVector);
Z
zhangjinchao01 已提交
322 323 324 325
  static IVector* createByPaddleVectorPtr(void* ptr);

public:
  /// Create IVector filled with zero
326
  static IVector* createZero(size_t sz, bool useGpu = isUsingGpu());
Z
zhangjinchao01 已提交
327 328 329 330 331

  /**
   * Create IVector from list of int.
   * It will create a new vector, and copy data into it.
   */
332
  static IVector* create(const std::vector<int>& data,
333
                         bool useGpu = isUsingGpu());
334

335 336 337 338 339
  static IVector* createVectorFromNumpy(
      int* data,
      int dim,
      bool copy = true,
      bool useGpu = isUsingGpu()) throw(UnsupportError);
Z
zhangjinchao01 已提交
340 341 342 343 344 345

  /**
   * Create Cpu IVector from numpy array, which dtype=int32
   *
   * If copy is false, it will create vector inplace
   */
346 347
  static IVector* createCpuVectorFromNumpy(int* data,
                                           int dim,
X
xuwei06 已提交
348
                                           bool copy = true);
Z
zhangjinchao01 已提交
349 350 351
  /**
   * Create Gpu IVector from numpy array, which dtype=int32
   */
352
  static IVector* createGpuVectorFromNumpy(int* data, int dim);
Z
zhangjinchao01 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

  /// Cast to numpy array inplace.
  void toNumpyArrayInplace(int** view_data, int* dim1) throw(UnsupportError);

  /// Copy to numpy array.
  void copyToNumpyArray(int** view_m_data, int* dim1);

  /// Copy from numpy array.
  void copyFromNumpyArray(int* data, int dim);

  virtual ~IVector();

  /// Return a list of int, the memory is alloced and copied.
  IntArray getData() const;

  /// This method will map to python [] method.
  int& operator[](const size_t idx) throw(RangeError, UnsupportError);

  const int& operator[](const size_t idx) const
      throw(RangeError, UnsupportError);

  inline int get(const size_t idx) const throw(RangeError, UnsupportError) {
    return (*this)[idx];
  }

  inline void set(const size_t idx, int val) throw(RangeError, UnsupportError) {
    (*this)[idx] = val;
  }

  /// Return true if it is gpu vector.
  bool isGpu() const;

  /// This method will map to python __len__();
  size_t getSize() const;

private:
  void* getSharedPtr() const;

  friend class Arguments;
  IVectorPrivate* m;
};

struct ArgumentsPrivate;

/// The Arguments is actual a std::vector<paddle::Argument> in paddle.
class Arguments {
private:
  Arguments();  // Internal Create.
401
  DISABLE_COPY(Arguments);
Z
zhangjinchao01 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

public:
  /**
   * Create a arguments with size.
   * Note that it can be zero.
   */
  static Arguments* createArguments(size_t slotNum);

  void resize(size_t slotNum);

  virtual ~Arguments();

  /**
   * Return the slot number that aguments contains.
   *
   * It is actually the vector's size
   */
  size_t getSlotNum() const;

  /**
   * The get functions of Arguments
   *
   * the param idx is the slot id
   */
  Matrix* getSlotValue(size_t idx) const throw(RangeError);
X
xuwei06 已提交
427
  Matrix* getSlotGrad(size_t idx) const throw(RangeError);
Z
zhangjinchao01 已提交
428 429 430
  IVector* getSlotIds(size_t idx) const throw(RangeError);
  Matrix* getSlotIn(size_t idx) const throw(RangeError);
  IVector* getSlotSequenceStartPositions(size_t idx) const throw(RangeError);
431
  IVector* getSlotSubSequenceStartPositions(size_t idx) const throw(RangeError);
Z
zhangjinchao01 已提交
432 433 434 435 436 437 438 439 440 441 442 443
  IVector* getSlotSequenceDim(size_t idx) const throw(RangeError);
  // End Of get functions of Arguments

  int64_t getBatchSize(size_t idx = 0) const throw(RangeError);

  /**
   * The set functions of Arguments.
   *
   * The param idx is the slot id.
   * The other param is the input Matrix or vector.
   */
  void setSlotValue(size_t idx, Matrix* mat) throw(RangeError);
X
xuwei06 已提交
444
  void setSlotGrad(size_t idx, Matrix* mat) throw(RangeError);
Z
zhangjinchao01 已提交
445 446 447 448
  void setSlotIn(size_t idx, Matrix* mat) throw(RangeError);
  void setSlotIds(size_t idx, IVector* vec) throw(RangeError);
  void setSlotSequenceStartPositions(size_t idx,
                                     IVector* vec) throw(RangeError);
449
  void setSlotSubSequenceStartPositions(size_t idx,
Y
yuyang18 已提交
450
                                        IVector* vec) throw(RangeError);
Z
zhangjinchao01 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  void setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError);

private:
  static Arguments* createByPaddleArgumentVector(void* ptr);
  void* getInternalArgumentsPtr() const;

private:
  ArgumentsPrivate* m;
  friend class Trainer;
  friend class GradientMachine;
  friend class SequenceGenerator;
};

enum GradientMatchineCreateMode {
  CREATE_MODE_NORMAL = 0,
  CREATE_MODE_TESTING = 4
};

struct ParameterConfigPrivate;
class ParameterConfig {
471
  DISABLE_COPY(ParameterConfig);
Z
zhangjinchao01 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  ParameterConfig();

  /**
   * Internal methods
   */
  static ParameterConfig* createParameterConfigFromParameterSharedPtr(
      void* ptr);
  static ParameterConfig* createParameterConfigFromParameterPtr(void* ptr);
  void* getRawPtr();

public:
  ~ParameterConfig();

  /**
   * return proto buf string.
   */
  std::string toProtoString() const;

private:
  ParameterConfigPrivate* m;

private:
  friend class Parameter;
  friend class ParameterOptimizer;
  friend struct ParameterTraverseCallbackPrivate;
};

struct OptimizationConfigPrivate;
class OptimizationConfig {
501
  DISABLE_COPY(OptimizationConfig);
Z
zhangjinchao01 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  OptimizationConfig();

public:
  static OptimizationConfig* createFromProtoString(const std::string& str);
  ~OptimizationConfig();

  /**
   * return protobuf string.
   */
  std::string toProtoString();

private:
  OptimizationConfigPrivate* m;

  friend class TrainerConfig;
  friend class ParameterOptimizer;
Y
Yu Yang 已提交
518
  friend class ParameterUpdater;
E
emailweixu 已提交
519
  friend class Trainer;
Z
zhangjinchao01 已提交
520 521 522 523 524 525
};

struct ParameterPrivate;
class Parameter {
private:
  Parameter();
526
  DISABLE_COPY(Parameter);
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

public:
  virtual ~Parameter();

  /**
   * get parameter name
   */
  std::string getName() const;

  /**
   * get buf in Parameter
   */
  Vector* getBuf(ParameterType type);

  /**
   * get id
   */
  size_t getID() const;

  ParameterConfig* getConfig();
X
xuwei06 已提交
547
  void setValueUpdated();
Z
zhangjinchao01 已提交
548

Y
Yu Yang 已提交
549 550
  size_t getSize() const;

Z
zhangjinchao01 已提交
551 552 553 554 555 556 557 558
private:
  static Parameter* createFromRawPtr(void* ptr);
  static Parameter* createFromSharedPtr(void* ptr);

private:
  ParameterPrivate* m;
  friend class UpdateCallbackWrapper;
  friend class GradientMachine;
Y
Yu Yang 已提交
559
  friend class ParameterUpdater;
Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569 570
};

struct ModelConfigPrivate;
/**
 * You can only get model config from TrainerConfig.
 *
 * It is used by GradientMachine.
 */
class ModelConfig {
private:
  ModelConfig();
571
  DISABLE_COPY(ModelConfig);
Z
zhangjinchao01 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

public:
  virtual ~ModelConfig();

private:
  ModelConfigPrivate* m;
  friend class TrainerConfig;
  friend struct TrainerConfigPrivate;
  friend class GradientMachine;
};

struct TrainerConfigPrivate;
/**
 * To get TrainerConfig from file.
 *
 * It is used by GradientMachine.
 */
class TrainerConfig {
private:
  TrainerConfig();
592
  DISABLE_COPY(TrainerConfig);
Z
zhangjinchao01 已提交
593 594 595 596 597 598

public:
  virtual ~TrainerConfig();

  static TrainerConfig* createFromTrainerConfigFile(
      const std::string& configPath);
E
emailweixu 已提交
599
  static TrainerConfig* createFromProtoString(const std::string& str);
Z
zhangjinchao01 已提交
600 601 602 603 604 605 606

  ModelConfig* getModelConfig() const;

  OptimizationConfig* getOptimizationConfig() const;

private:
  TrainerConfigPrivate* m;
E
emailweixu 已提交
607
  friend class Trainer;
Z
zhangjinchao01 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
};

/**
 * The callback in backword.
 *
 * You can inherit this class in python.
 *
 * @code
 * class UpdateCallbackInPython(paddle.UpdateCallback):
 *   def __init__(self):
 *     paddle.UpdateCallback.__init__(self)
 *
 *   def apply(self, param):
 *     assert isinstance(param, paddle.Parameter)
 * @endcode
 */
class UpdateCallback {
public:
  virtual ~UpdateCallback();
  virtual void apply(Parameter* p);
};

struct ParameterTraverseCallbackPrivate;
class ParameterTraverseCallback {
632
  DISABLE_COPY(ParameterTraverseCallback);
Z
zhangjinchao01 已提交
633 634 635 636 637
  ParameterTraverseCallback();

public:
  ~ParameterTraverseCallback();

638 639
  void apply(const std::vector<Vector*>& vecs,
             const ParameterConfig& config,
Z
zhangjinchao01 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653
             size_t sparseId);

private:
  ParameterTraverseCallbackPrivate* m;
  friend class ParameterOptimizer;
};

/**
 * The ParameterOptimizer Wrapper Class.
 *
 * Basically same as common/ParameterOptimizer.h
 */
struct ParameterOptimizerPrivate;
class ParameterOptimizer {
654
  DISABLE_COPY(ParameterOptimizer);
Z
zhangjinchao01 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  ParameterOptimizer();

public:
  static ParameterOptimizer* create(OptimizationConfig* config);

  ~ParameterOptimizer();

  void init(size_t numRows, const ParameterConfig* config);

  void startPass();

  void finishPass();

  void startBatch(size_t numSamplesProcessed);

  void finishBatch();

672 673
  void update(const std::vector<Vector*>& vecs,
              const ParameterConfig& conf,
Z
zhangjinchao01 已提交
674 675 676 677 678 679 680 681 682 683 684 685
              size_t sparseId = NO_SPARSE_ID);

  std::vector<int> getParameterTypes() const;

  ParameterTraverseCallback* needSpecialTraversal(
      const ParameterConfig& config) const;

private:
  ParameterOptimizerPrivate* m;
};

class SequenceGenerator;
Y
Yu Yang 已提交
686
class Evaluator;
Z
zhangjinchao01 已提交
687 688 689 690
struct GradientMachinePrivate;
class GradientMachine {
private:
  GradientMachine();
691
  DISABLE_COPY(GradientMachine);
Z
zhangjinchao01 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

public:
  virtual ~GradientMachine();

  /**
   * Create By ProtoStr.
   *
   * The ProtoStr can be generate by python's protobuf code.
   */
  static GradientMachine* createByConfigProtoStr(
      const std::string& protoStr,
      GradientMatchineCreateMode mode = CREATE_MODE_NORMAL,
      const std::vector<int>& parameterTypes = defaultParamTypes);

  /**
   * Create by ModelConfig object.
   *
   * To get ModelConfig, you can get TrainerConfig from config file, then get
   * model config by TrainerConfig
   */
  static GradientMachine* createByModelConfig(
713 714
      ModelConfig* conf,
      GradientMatchineCreateMode mode = CREATE_MODE_NORMAL,
Z
zhangjinchao01 已提交
715 716
      const std::vector<int>& parameterTypes = defaultParamTypes);

Y
Yu Yang 已提交
717 718 719 720 721 722 723
  /**
   * @brief finish
   */
  void finish();

  void start();

724 725 726 727 728 729 730 731 732 733
  /**
   * Prefetch row ids of sparse parameter.
   */
  void prefetch(const Arguments& inArgs);

  /**
   * Do some thing when train pass ended.
   */
  void onPassEnd();

Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  /**
   * The forward stage of GradientMachine.
   *
   * @note  the outArgs could be zero length arguemnts.
   * @note  THIS METHOD IS VERY USEFULL FOR PREDICT FROM TRAINED MODEL.
   */
  void forward(const Arguments& inArgs, Arguments* outArgs, PassType passType);

  /**
   * The backward stage of GradientMachine.
   *
   * @note  Currently the ParameterUpdater is not wrapped in SWIG, so backward
   * cannot actually train a network. But you can write a update callback to
   * change the parameter or implement a ParameterUpdater in python side.
   */
  void backward(const UpdateCallback& callback = UpdateCallback());

  /**
   * Combine forward/backward
   */
754 755
  void forwardBackward(const Arguments& inArgs,
                       Arguments* outArgs,
Z
zhangjinchao01 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
                       PassType passType,
                       const UpdateCallback& callback = UpdateCallback());

  void loadParameters(const std::string& path);

  size_t getParameterSize() const;
  Parameter* getParameter(size_t i) throw(RangeError);

  void randParameters();

  Matrix* getLayerOutput(const std::string& layerName) const
      throw(UnsupportError);

  /**
   * Create a sequence generator.
   *
   * @note  It just like a paddle_gen_sequence.
   */
  SequenceGenerator* asSequenceGenerator(
      const std::vector<std::string>& dict = std::vector<std::string>(),
776 777 778
      size_t begin_id = 0UL,
      size_t end_id = 0UL,
      size_t max_length = 100UL,
Z
zhangjinchao01 已提交
779 780
      size_t beam_size = -1UL);

Y
Yu Yang 已提交
781 782 783 784
  Evaluator* makeEvaluator();

  void eval(Evaluator* evaluator);

Z
zhangjinchao01 已提交
785 786 787 788
private:
  GradientMachinePrivate* m;

  static GradientMachine* createFromPaddleModelPtr(
789 790
      const void* confPtr,
      GradientMatchineCreateMode mode,
Z
zhangjinchao01 已提交
791 792 793 794
      const std::vector<int>& types);

  // Not to use c++ 11 init-list, so we use static var as function default arg.
  static std::vector<int> defaultParamTypes;
E
emailweixu 已提交
795
  friend class Trainer;
Y
Yu Yang 已提交
796 797 798 799 800 801 802 803 804 805
  friend class ParameterUpdater;
};

struct ParameterUpdaterPrivate;
class ParameterUpdater {
private:
  ParameterUpdater();

public:
  static ParameterUpdater* createLocalUpdater(OptimizationConfig* config);
Q
qiaolongfei 已提交
806 807
  static ParameterUpdater* createRemoteUpdater(OptimizationConfig* config,
                                               int passCount);
Y
Yu Yang 已提交
808 809
  ~ParameterUpdater();

Y
Yu Yang 已提交
810 811 812 813
  /**
   * @brief initialize Parameter Updater by GradientMachine.
   * @param gm
   */
Y
Yu Yang 已提交
814 815
  void init(const GradientMachine& gm);

Y
Yu Yang 已提交
816 817 818
  /**
   * @brief begin of a training/testing of one pass.
   */
Y
Yu Yang 已提交
819 820
  void startPass();

Y
Yu Yang 已提交
821 822 823
  /**
   * @brief end of a traning/testing of one pass.
   */
Y
Yu Yang 已提交
824 825
  void finishPass();

Y
Yu Yang 已提交
826 827 828 829 830
  /**
   * @brief begin of a training/testing of one batch.
   * @param data batch's size
   * @return PassType, mostly will be training.
   */
Y
Yu Yang 已提交
831
  PassType startBatch(size_t batchSize);
Y
Yu Yang 已提交
832

Y
Yu Yang 已提交
833 834 835 836
  /**
   * @brief end of a traning/testing of one batch
   * @param cost current batch cost.
   */
Y
Yu Yang 已提交
837 838
  void finishBatch(float cost);

Y
Yu Yang 已提交
839 840 841 842
  /**
   * @brief update a parameter (by local optimizer or by cluster pserver)
   * @param param
   */
Y
Yu Yang 已提交
843 844
  void update(Parameter* param);

Y
Yu Yang 已提交
845 846 847 848 849
  /**
   * @brief restore the average parameter.
   * @note It is only used in AverageOptimizer. Restore will get the current
   * PARAMETER_VALUE back.
   */
Y
Yu Yang 已提交
850 851
  void restore();

Y
Yu Yang 已提交
852 853 854 855 856 857
  /**
   * @brief apply. Store the average parameter.
   * @note It is only used in AverageOptimizer. Apply will store the current
   * PARAMETER_VALUE to buffer, calcaualte current Average Parameter, and save
   * it to PARAMETER_VALUE.
   */
Y
Yu Yang 已提交
858 859
  void apply();

Y
Yu Yang 已提交
860 861 862 863 864
  /**
   * @brief catchUpWith The Regularization will be delayed in many situations(
   * pserver, local sparse). Catch Up means catch the regularization up, apply
   * regularization to all params.
   */
Y
Yu Yang 已提交
865 866
  void catchUpWith();

Y
Yu Yang 已提交
867 868
private:
  ParameterUpdaterPrivate* m;
Z
zhangjinchao01 已提交
869 870
};

Y
Yu Yang 已提交
871 872 873 874
struct EvaluatorPrivate;
class Evaluator {
private:
  Evaluator();
Y
Yu Yang 已提交
875
  DISABLE_COPY(Evaluator);
Y
Yu Yang 已提交
876 877 878 879

public:
  ~Evaluator();

Y
Yu Yang 已提交
880 881 882
  /**
   * @brief begin an evaluate stage.
   */
Y
Yu Yang 已提交
883 884
  void start();

Y
Yu Yang 已提交
885 886 887
  /**
   * @brief end an evaluate stage.
   */
Y
Yu Yang 已提交
888 889
  void finish();

Y
Yu Yang 已提交
890 891 892 893 894
  /**
   * @brief toString will get a evaluate result.
   *
   * __repr__ method in python
   */
Y
Yu Yang 已提交
895 896 897 898 899 900 901 902
  std::string toString();

private:
  EvaluatorPrivate* m;

  friend class GradientMachine;
};

Z
zhangjinchao01 已提交
903 904 905 906 907
struct TrainerPrivate;
class Trainer {
private:
  TrainerPrivate* m;
  Trainer();
E
emailweixu 已提交
908
  Trainer(TrainerConfig* optConfig, GradientMachine* gm);
909
  DISABLE_COPY(Trainer);
Z
zhangjinchao01 已提交
910 911 912 913 914 915 916

public:
  virtual ~Trainer();

  /// Create A Trainer By TrainerConfig. using paddle command line.
  static Trainer* createByCommandLine() throw(IOError);

917 918
  static Trainer* create(TrainerConfig* optConfig,
                         GradientMachine* gm) throw(IOError);
E
emailweixu 已提交
919 920

  /// Start training
Z
zhangjinchao01 已提交
921
  void startTrain();
E
emailweixu 已提交
922 923

  /// Finish training
Z
zhangjinchao01 已提交
924 925
  void finishTrain();

E
emailweixu 已提交
926
  /// Start a pass.
Z
zhangjinchao01 已提交
927 928
  void startTrainPass();

E
emailweixu 已提交
929 930
  /// Finish a pass
  void finishTrainPass();
Z
zhangjinchao01 已提交
931 932 933 934 935 936

  /**
   * Train one batch,
   *
   * @return true if all batch finished.
   */
E
emailweixu 已提交
937
  bool trainOneBatch(size_t batchSize);
Z
zhangjinchao01 已提交
938

E
emailweixu 已提交
939
  void trainOneDataBatch(size_t batchSize, const Arguments& args);
Z
zhangjinchao01 已提交
940

E
emailweixu 已提交
941 942 943
  void startTestPeriod();
  void testOneDataBatch(size_t batchSize, const Arguments& args);
  void finishTestPeriod();
Z
zhangjinchao01 已提交
944

E
emailweixu 已提交
945
  void forwardOneBatch(size_t batchSize);
Z
zhangjinchao01 已提交
946

E
emailweixu 已提交
947
  Arguments* getForwardOutput();
Z
zhangjinchao01 已提交
948 949 950 951

  Matrix* getLayerOutput(const std::string& layerName);
};

E
emailweixu 已提交
952
/// the N-Best results generated from one input sequence.
Z
zhangjinchao01 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
class ISequenceResults {
public:
  virtual ~ISequenceResults();

  /// Number of result.
  virtual size_t getSize() const = 0;

  /**
   * Get sentence from dictionary.
   *
   * @param id  the index of result.
   * @param split  if true, the return sentence will be splited with ' ' by
   *               each word. Default is false.
   */
  virtual std::string getSentence(size_t id, bool split = false) const
      throw(RangeError) = 0;
  virtual std::vector<int> getSequence(size_t id) const throw(RangeError) = 0;
  virtual float getScore(size_t id) const throw(RangeError) = 0;
};

struct SequenceGeneratorPrivate;
class SequenceGenerator {
975
  DISABLE_COPY(SequenceGenerator);
Z
zhangjinchao01 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  SequenceGenerator();

public:
  virtual ~SequenceGenerator();

  /**
   * Generate Sequence by input.
   *
   * @note  The inArgs is just one sequence of data.
   * @note  The return will get a N-best generate result by inArgs.
   *        Sort by score.
   */
  ISequenceResults* generateSequence(const Arguments& inArgs) const;

  void setDict(const std::vector<std::string>& dict);
  void setBos(size_t bos);
  void setEos(size_t eos);
  void setMaxLength(size_t maxlength);
  void setBeamSize(size_t beamSize);

private:
  static SequenceGenerator* createByGradientMachineSharedPtr(void* ptr);
  friend class GradientMachine;

private:
  SequenceGeneratorPrivate* m;
};