fill_constant_op_npu.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/utils.h"

namespace paddle {
namespace operators {

22
template <typename T>
23 24
class FillConstantNPUKernel : public framework::OpKernel<T> {
 public:
25
  void Compute(const framework::ExecutionContext &ctx) const override {
26 27 28 29 30
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
    auto str_value = ctx.Attr<std::string>("str_value");
    auto float_value = ctx.Attr<float>("value");

31
    auto *out_var = ctx.Output<framework::Tensor>("Out");
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    T value;
    if (str_value.empty()) {
      value = static_cast<T>(float_value);
    } else {
      // handle NaN/Inf first, which cannot be read from stream.
      if (str_value == "inf") {
        value = static_cast<T>(std::numeric_limits<double>::infinity());
      } else if (str_value == "-inf") {
        value = static_cast<T>(-std::numeric_limits<double>::infinity());
      } else if (str_value == "nan") {
        value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
      } else {
        std::stringstream convert_stream(str_value);
        if (std::is_same<int64_t, T>::value) {
          int64_t tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        } else {
          double tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        }
      }
    }
    auto shape = GetShape(ctx);

62
    out_var->mutable_data<T>(shape, ctx.GetPlace());
63 64 65 66 67
    if (data_type != framework::proto::VarType::BOOL) {
      Tensor tensor_value(data_type);
      tensor_value.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&tensor_value, value);
      NpuOpRunner runner;
68
#if (CANN_VERSION_CODE >= 503003)
69 70 71 72 73 74 75
      runner.SetType("FillD")
          .AddInput(tensor_value)
          .AddOutput(*out_var)
          .AddAttrs(
              {{ "dims",
                 framework::vectorize(shape) }})
          .Run(stream);
76
#else
77 78 79 80 81
      runner.SetType("Fill")
          .AddInput(framework::vectorize(shape))
          .AddInput(tensor_value)
          .AddOutput(*out_var)
          .Run(stream);
82
#endif
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    } else {
      const auto &dev_ctx =
          ctx.template device_context<paddle::platform::NPUDeviceContext>();
      auto op_func = [&shape, &value](
          const std::vector<Tensor> &inputs, const std::vector<Tensor> &outputs,
          const NPUAttributeMap &attrs,
          const platform::NPUDeviceContext &dev_ctx) {
        Tensor tensor_value;
        tensor_value.mutable_data<uint8_t>({1}, dev_ctx.GetPlace());
        FillNpuTensorWithConstant<uint8_t>(&tensor_value,
                                           static_cast<uint8_t>(value));

        NpuOpRunner runner;
        runner.SetType("Fill")
            .AddInput(framework::vectorize(shape))
            .AddInput(tensor_value)
            .AddOutput(outputs[0])
            .Run(dev_ctx.stream());
      };
      NpuOpRunner::TypeAdapter({}, {*out_var}, {}, dev_ctx, op_func, {},
                               {framework::proto::VarType::UINT8});
    }
105 106 107 108 109 110
  }
};
}  // namespace operators
}  // namespace paddle

REGISTER_OP_NPU_KERNEL(
111 112 113 114 115 116 117
    fill_constant, paddle::operators::FillConstantNPUKernel<float>,
    paddle::operators::FillConstantNPUKernel<bool>,
    paddle::operators::FillConstantNPUKernel<int>,
#ifdef PADDLE_WITH_ASCEND_INT64
    paddle::operators::FillConstantNPUKernel<int64_t>,
#endif
    paddle::operators::FillConstantNPUKernel<paddle::platform::float16>);