tensor_utils.cc 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

34
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
35
    const paddle::framework::Tensor& src) {
36
  VLOG(3) << "MakePtenDenseTensor based Tensor.";
37 38
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
39
                             src.layout(),
40 41
                             src.offset()};
  auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
42 43 44 45 46
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
47 48 49
    const paddle::framework::Tensor& src) {
  auto out = MakePtenDenseTensorBase(
      static_cast<const paddle::framework::Tensor&>(src));
50 51 52
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
53 54
}

55
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
56
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
57 58
  pten::DenseTensorMeta meta{
      arg_def.dtype, src.dims(), src.layout(), src.offset()};
59

60 61 62
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
63 64 65 66 67 68 69 70 71 72 73
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
74 75
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
  auto out = MakePtenDenseTensorBase(
76 77 78 79
      static_cast<const paddle::framework::Tensor&>(src), arg_def);
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
80 81
}

82
pten::Scalar MakePtenScalar(const paddle::framework::Tensor& src) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

140
pten::ScalarArray MakePtenScalarArray(const paddle::framework::Tensor& src) {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    const framework::Variable& variable, const pten::TensorArgDef& arg_def) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);

  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor);
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor.value());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
  return {};
}

std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    framework::Variable* variable, const pten::TensorArgDef& arg_def) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
283
    return MakePtenDenseTensor(*tensor, arg_def);
284 285 286 287
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
288
    return MakePtenDenseTensor(tensor->value(), arg_def);
289 290 291 292 293 294 295 296
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
  return {};
}

297
void MovesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
298 299 300 301 302 303 304 305
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move storage."));
306
  dst->Resize(src->dims());
307
  dst->set_type(pten::TransToProtoVarType(src->dtype()));
308 309
  auto storage = src->MoveMemoryHolder();
  dst->ResetHolderWithType(storage, pten::TransToProtoVarType(src->dtype()));
310
  dst->set_offset(src->meta().offset);
311 312
}

313 314
void MovesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  MovesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
315
  SetLoD(dst->mutable_lod(), src->lod());
316 317
}

318
void SharesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
319 320 321 322 323 324 325 326 327
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
  dst->Resize(src->dims());
328
  dst->ResetHolderWithType(src->Holder(),
329
                           pten::TransToProtoVarType(src->dtype()));
330
  dst->set_offset(src->meta().offset);
331 332
}

333 334
void SharesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  SharesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
335 336 337
  SetLoD(dst->mutable_lod(), src->lod());
}

338 339
void ReMakePtenDenseTensorBase(const paddle::framework::Tensor& src,
                               pten::DenseTensor* dst) {
340
  VLOG(3) << "ReMakePtenDenseTensor based Tensor.";
341 342
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
343
  meta->dtype = pten::TransToPtenDataType(src.type());
344
  meta->layout = src.layout();
345
  meta->offset = src.offset();
346
  dst->ResetHolder(src.Holder());
347 348
}

349
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
350 351
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
352
  SetLoD(&meta->lod, src.lod());
353 354
  ReMakePtenDenseTensorBase(static_cast<const paddle::framework::Tensor&>(src),
                            dst);
355 356
}

357 358 359
void ReMakePtenDenseTensorByArgDefBase(const paddle::framework::Tensor& src,
                                       const pten::TensorArgDef& arg_def,
                                       pten::DenseTensor* dst) {
360
  VLOG(3) << "ReMakePtenDenseTensor based Tensor and TensorArgDef.";
361 362
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
363
  meta->dtype = arg_def.dtype;
364
  meta->layout = src.layout();
365
  meta->offset = src.offset();
366

367 368
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
369
    dst->ResetHolder(src.Holder());
370
  } else {
371 372
    // This does not affect the correctness, and will be modified immediately.
    // dst->mutable_data(pten::TransToFluidPlace(arg_def.backend));
373
  }
374 375
}

376
void ReMakePtenDenseTensorByArgDef(const paddle::framework::Tensor& src,
377 378 379 380
                                   const pten::TensorArgDef& arg_def,
                                   pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  SetLoD(&meta->lod, src.lod());
381
  ReMakePtenDenseTensorByArgDefBase(
382 383 384
      static_cast<const paddle::framework::Tensor&>(src), arg_def, dst);
}

385 386 387 388 389 390
void ReMakePtenDenseTensorFromVar(const framework::Variable& variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
Y
YuanRisheng 已提交
391 392 393 394 395 396
    // check input dtype before ReMakePtenDenseTensor
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
397 398 399
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
400
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
401
    } else {
402
      ReMakePtenDenseTensorByArgDef(tensor, arg_def, dst);
403 404 405 406 407
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
Y
YuanRisheng 已提交
408 409 410 411 412
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.value().type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
413 414 415 416
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
417
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
418
    } else {
419
      ReMakePtenDenseTensorByArgDef(tensor.value(), arg_def, dst);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

void ReMakePtenDenseTensorFromVar(framework::Variable* variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
435
    ReMakePtenDenseTensorByArgDef(*tensor, arg_def, dst);
436 437 438 439
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
440
    ReMakePtenDenseTensorByArgDef(tensor->value(), arg_def, dst);
441 442 443 444 445 446 447
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
    tensor->Resize(src->dims());
    SetLoD(tensor->mutable_lod(), src->lod());

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
465 466
         !IsSameAllocation(tensor->Holder(), src->Holder()))) {
      tensor->ResetHolderWithType(std::move(src->Holder()), dtype);
467 468 469 470 471 472 473 474 475 476 477 478 479
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

  } else if (variable->IsType<framework::SelectedRows>()) {
    auto* tensor = variable->GetMutable<framework::SelectedRows>();
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
480 481
      tensor->mutable_value()->ResetHolderWithType(std::move(src->Holder()),
                                                   dtype);
482 483 484 485 486 487 488 489
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

490 491
}  // namespace experimental
}  // namespace paddle