clip_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/platform/transform.h"
21 22 23
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#endif
W
wanghaoshuang 已提交
24 25 26 27

namespace paddle {
namespace operators {

W
wanghaoshuang 已提交
28 29
using framework::Tensor;
using platform::Transform;
W
wanghaoshuang 已提交
30

W
wanghaoshuang 已提交
31 32 33 34
template <typename T>
class ClipFunctor {
 public:
  explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
35
  HOSTDEVICE T operator()(const T x) const {
36
    return x < min_ ? min_ : x > max_ ? max_ : x;
W
wanghaoshuang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
  }

 private:
  T min_;
  T max_;
};

template <typename T>
class ClipGradFunctor {
 public:
  explicit ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x, const T& y) const {
Z
zhangbo9674 已提交
49
    return (y > min_ && y < max_) ? x : static_cast<T>(0);
W
wanghaoshuang 已提交
50
  }
W
wanghaoshuang 已提交
51

W
wanghaoshuang 已提交
52 53 54 55
 private:
  T min_;
  T max_;
};
56

Q
QI JUN 已提交
57
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
58
class ClipKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
59 60
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yang Zhang 已提交
61
    auto max = static_cast<T>(context.Attr<float>("max"));
62 63 64 65 66 67 68 69 70 71
    Tensor max_cpu;
    if (context.HasInput("Max")) {
      auto* max_t = context.Input<Tensor>("Max");
      auto* max_data = max_t->data<T>();
      if (platform::is_gpu_place(max_t->place())) {
        TensorCopySync(*max_t, platform::CPUPlace(), &max_cpu);
        max_data = max_cpu.data<T>();
      }
      max = max_data[0];
    }
Y
Yang Zhang 已提交
72
    max = static_cast<T>(max);
73

Z
zhangbo9674 已提交
74
    auto min = static_cast<T>(context.Attr<float>("min"));
75 76 77 78 79 80 81 82 83 84
    Tensor min_cpu;
    if (context.HasInput("Min")) {
      auto* min_t = context.Input<Tensor>("Min");
      auto* min_data = min_t->data<T>();
      if (platform::is_gpu_place(min_t->place())) {
        TensorCopySync(*min_t, platform::CPUPlace(), &min_cpu);
        min_data = min_cpu.data<T>();
      }
      min = min_data[0];
    }
Y
Yang Zhang 已提交
85 86 87 88 89

    PADDLE_ENFORCE_LE(min, max,
                      platform::errors::InvalidArgument(
                          "max should be greater than or equal to min. "
                          "But received min = %f, max = %f",
S
sneaxiy 已提交
90
                          static_cast<float>(min), static_cast<float>(max)));
91

S
sneaxiy 已提交
92 93 94 95 96 97 98
    auto* x_var = context.InputVar("X");
    if (x_var->IsType<framework::LoDTensor>()) {
      auto* x = context.Input<framework::LoDTensor>("X");
      auto* out = context.Output<framework::LoDTensor>("Out");
      T* out_data = out->mutable_data<T>(context.GetPlace());
      const T* x_data = x->data<T>();
      int64_t numel = x->numel();
99
      if (platform::is_gpu_place(context.GetPlace())) {
100
#if defined(__NVCC__) || defined(__HIPCC__)
101 102 103 104 105 106
        std::vector<const framework::Tensor*> ins = {x};
        std::vector<framework::Tensor*> outs = {out};
        auto functor = ClipFunctor<T>(min, max);
        LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
            context.template device_context<platform::CUDADeviceContext>(), ins,
            &outs, functor);
107 108 109 110 111 112
#endif
      } else {
        Transform<DeviceContext> trans;
        trans(context.template device_context<DeviceContext>(), x_data,
              x_data + numel, out_data, ClipFunctor<T>(min, max));
      }
S
sneaxiy 已提交
113 114 115
    } else if (x_var->IsType<framework::SelectedRows>()) {
      auto* x = context.Input<framework::SelectedRows>("X");
      auto* out = context.Output<framework::SelectedRows>("Out");
116 117 118
      PADDLE_ENFORCE_NE(x, out, platform::errors::InvalidArgument(
                                    "Inplace clip is not allowed "
                                    "when x is SelectedRows"));
S
sneaxiy 已提交
119 120 121 122 123 124 125 126 127
      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(context.template device_context<DeviceContext>(), *x, out);
      auto* out_tensor = out->mutable_value();
      auto* out_data = out_tensor->data<T>();
      int64_t numel = out_tensor->numel();
      Transform<DeviceContext> trans;
      trans(context.template device_context<DeviceContext>(), out_data,
            out_data + numel, out_data, ClipFunctor<T>(min, max));
    } else {
128 129
      PADDLE_THROW(platform::errors::Unavailable(
          "ClipOp only supports LoDTensor and SelectedRows."));
S
sneaxiy 已提交
130
    }
W
wanghaoshuang 已提交
131 132 133
  }
};

Q
QI JUN 已提交
134
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
135
class ClipGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
136 137
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yang Zhang 已提交
138
    auto max = static_cast<T>(context.Attr<float>("max"));
139 140 141 142 143 144 145 146 147 148
    Tensor max_cpu;
    if (context.HasInput("Max")) {
      auto* max_t = context.Input<Tensor>("Max");
      auto* max_data = max_t->data<T>();
      if (platform::is_gpu_place(max_t->place())) {
        TensorCopySync(*max_t, platform::CPUPlace(), &max_cpu);
        max_data = max_cpu.data<T>();
      }
      max = max_data[0];
    }
Y
Yang Zhang 已提交
149
    max = static_cast<T>(max);
150

Z
zhangbo9674 已提交
151
    auto min = static_cast<T>(context.Attr<float>("min"));
152 153 154 155 156 157 158 159 160 161
    Tensor min_cpu;
    if (context.HasInput("Min")) {
      auto* min_t = context.Input<Tensor>("Min");
      auto* min_data = min_t->data<T>();
      if (platform::is_gpu_place(min_t->place())) {
        TensorCopySync(*min_t, platform::CPUPlace(), &min_cpu);
        min_data = min_cpu.data<T>();
      }
      min = min_data[0];
    }
Y
Yang Zhang 已提交
162
    min = static_cast<T>(min);
163

S
sneaxiy 已提交
164 165 166 167
    auto* d_out =
        context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto* d_x =
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
168
    if (d_x != nullptr) {
S
sneaxiy 已提交
169
      auto* x = context.Input<framework::LoDTensor>("X");
W
wanghaoshuang 已提交
170
      int64_t numel = d_out->numel();
W
wanghaoshuang 已提交
171
      auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
172 173
      const T* d_out_data = d_out->data<T>();
      const T* x_data = x->data<T>();
Q
QI JUN 已提交
174 175 176
      Transform<DeviceContext> trans;
      trans(context.template device_context<DeviceContext>(), d_out_data,
            d_out_data + numel, x_data, d_x_data, ClipGradFunctor<T>(min, max));
W
wanghaoshuang 已提交
177 178 179 180 181 182
    }
  }
};

}  // namespace operators
}  // namespace paddle