elementwise_mul_op.h 15.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <string>
Y
YuanRisheng 已提交
18
#include "paddle/fluid/framework/pten_utils.h"
W
Wu Yi 已提交
19 20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21
#include "paddle/fluid/operators/math/blas.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23

Y
YuanRisheng 已提交
24 25 26 27
// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
28 29 30
namespace paddle {
namespace operators {

31 32 33 34 35 36 37
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
38 39
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
40 41

#ifdef PADDLE_WITH_MKLDNN
42
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
43 44 45
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
46 47 48 49
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
50 51 52 53 54 55 56 57 58 59 60 61 62

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
63 64
};

65 66 67 68 69
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
70 71 72
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
73 74 75 76 77 78
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
79
}
80

81 82 83 84 85 86
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
87

Q
QI JUN 已提交
88
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
89
class ElementwiseMulKernel : public framework::OpKernel<T> {
90 91
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
92
    auto x_var = ctx.InputVar("X");
93 94 95 96
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
C
chengduo 已提交
97
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
98 99 100

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
101 102 103 104 105
      PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                        platform::errors::InvalidArgument(
                            "For elementwise_op, if X is Sparse, Y must be "
                            "scalar. But reveived the size of Y = %s.",
                            y->dims().size()));
C
chengduo 已提交
106 107 108 109 110 111 112 113
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
Y
YuanRisheng 已提交
114 115 116 117 118 119 120 121
      z->mutable_data<T>(ctx.GetPlace());
      auto dims_equal = x.dims() == y->dims();
      if (dims_equal) {
        SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
        same_dims_mul(ctx, &x, y, z);
      } else {
        default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
      }
C
chengduo 已提交
122
    } else if (x_var->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
123 124 125 126 127 128 129 130 131
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
132
      pten::Multiply<T>(dev_ctx, *pt_x.get(), *pt_y.get(), axis, pt_z.get());
C
chengduo 已提交
133
    } else {
134 135 136 137
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
C
chengduo 已提交
138
    }
G
gongweibao 已提交
139 140 141
  }
};
template <typename T>
C
chengduoZH 已提交
142
struct MulGradDX {
C
chengduoZH 已提交
143
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
144 145
};

146 147 148 149 150 151 152
template <typename T>
struct MulGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
153 154 155 156
    return dout * y_conj;
  }
};

G
gongweibao 已提交
157
template <typename T>
C
chengduoZH 已提交
158
struct MulGradDY {
C
chengduoZH 已提交
159
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
160
};
C
chengduoZH 已提交
161

162 163 164 165 166 167 168
template <typename T>
struct MulGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> x_conj(x.real, -x.imag);
169 170 171 172
    return dout * x_conj;
  }
};

173 174 175 176 177 178 179 180 181 182 183 184 185
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
187 188 189 190 191 192 193 194 195 196 197
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
198
template <typename DeviceContext, typename T>
199
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
200 201
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
202
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
203 204 205 206 207
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
208
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
209 210 211
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
212 213 214 215 216 217 218
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
219 220
  }
};
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

244 245
    // dx = dout * ddy
    // dy = dout * ddx
246
    // ddout = ddx * y + x * ddy
247 248 249 250 251 252
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
253
    // (5) dx = dout * ddy
254
    if (ddout) {
255 256 257
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
294 295 296 297
    }
  }
};

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
template <typename DeviceContext, typename T>
class ElementwiseMulTripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;
    // get input
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>("DOut");
    auto* ddx = ctx.Input<framework::Tensor>("DDX");
    auto* ddy = ctx.Input<framework::Tensor>("DDY");

    auto* d_dx = ctx.Input<framework::Tensor>("D_DX");
    auto* d_dy = ctx.Input<framework::Tensor>("D_DY");
    auto* d_ddout = ctx.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = ctx.Output<framework::Tensor>("D_X");
    auto* out_d_y = ctx.Output<framework::Tensor>("D_Y");
    auto* out_d_dout = ctx.Output<framework::Tensor>("D_DOut");

    auto* out_d_ddx = ctx.Output<framework::Tensor>("D_DDX");
    auto* out_d_ddy = ctx.Output<framework::Tensor>("D_DDY");

    if (out_d_x) out_d_x->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(y->dims(), ctx.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(dout->dims(), ctx.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(y->dims(), ctx.GetPlace());

    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

    if (d_ddout) {
      if (out_d_x) {
        // out_d_x = ddy * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_ddout,
                                                  out_d_x);
      }
      if (out_d_y) {
        // out_d_y = ddx * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, d_ddout,
                                                  out_d_y);
      }
    }

    if (out_d_dout) {
      // get out_d_dout
      // out_d_dout = ddy * d_dx + d_dy * ddx
      Tensor out_d_dout_tmp;
      out_d_dout_tmp.mutable_data<T>(dout->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, d_dy, &ddx_safe,
                                                out_d_dout);
      default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_dx,
                                                &out_d_dout_tmp);
      auto out_d_dout_t = framework::EigenVector<T>::Flatten(*out_d_dout);
      auto out_d_dout_tmp_t =
          framework::EigenVector<T>::Flatten(out_d_dout_tmp);
      out_d_dout_t.device(place) = out_d_dout_t + out_d_dout_tmp_t;
    }

    if (out_d_ddx) {
      // get out_d_ddx
      // out_d_ddx = dout * d_dy + y * d_ddout
      Tensor out_d_ddx_tmp;
      out_d_ddx_tmp.mutable_data<T>(ddx->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dy, out_d_ddx);
      default_elementwise_mul<DeviceContext, T>(ctx, y, d_ddout,
                                                &out_d_ddx_tmp);
      auto out_d_ddx_t = framework::EigenVector<T>::Flatten(*out_d_ddx);
      auto out_d_ddx_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddx_tmp);
      out_d_ddx_t.device(place) = out_d_ddx_t + out_d_ddx_tmp_t;
    }

    if (out_d_ddy) {
      // get out_d_ddy
      // out_d_ddy = dout * d_dx + x * d_ddout
      Tensor out_d_ddy_tmp;
      out_d_ddy_tmp.mutable_data<T>(ddy->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dx, out_d_ddy);
      default_elementwise_mul<DeviceContext, T>(ctx, x, d_ddout,
                                                &out_d_ddy_tmp);
      auto out_d_ddy_t = framework::EigenVector<T>::Flatten(*out_d_ddy);
      auto out_d_ddy_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddy_tmp);
      out_d_ddy_t.device(place) = out_d_ddy_t + out_d_ddy_tmp_t;
    }
  }
};
389 390
}  // namespace operators
}  // namespace paddle