scale_api.h 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "glog/logging.h"

19 20 21 22 23 24 25 26 27 28
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/kernels/scale_kernel.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

namespace paddle {
namespace experimental {

PADDLE_API Tensor scale_kernel_context(const Tensor& x,
                                       const Scalar& scale,
                                       float bias,
                                       bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
56
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
57 58 59 60 61 62
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
63
  auto kernel_context = phi::KernelContext(dev_ctx);
64

65
  auto dense_x = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
66
  kernel_context.EmplaceBackInput(dense_x.get());
67

68
  kernel_context.EmplaceBackAttr(phi::Scalar(scale));
69 70 71
  kernel_context.EmplaceBackAttr(bias);
  kernel_context.EmplaceBackAttr(bias_after_scale);

72 73 74 75 76 77
  auto dense_out = std::make_shared<phi::DenseTensor>(
      phi::make_intrusive<paddle::experimental::SharedStorage>(
          phi::TransToPtenPlace(kernel_backend)),
      phi::DenseTensorMeta());
  phi::MetaTensor meta_out(dense_out.get());
  phi::UnchangedInferMeta(*dense_x, &meta_out);
78
  kernel_context.EmplaceBackOutput(dense_out.get());
79 80 81 82 83 84 85 86 87

  Tensor out;
  out.set_impl(dense_out);

  kernel(&kernel_context);
  return out;
}

static void ScaleCPU(DataType kernel_dtype,
88 89
                     const phi::CPUContext& dev_ctx,
                     const phi::DenseTensor& x,
90 91 92
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
93
                     phi::DenseTensor* dense_out) {
94
  switch (kernel_dtype) {
95 96 97
    case phi::DataType::FLOAT64: {
      phi::ScaleKernel<double>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
98 99
      break;
    }
100 101 102
    case phi::DataType::FLOAT32: {
      phi::ScaleKernel<float>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
103 104
      break;
    }
105 106 107
    case phi::DataType::BFLOAT16: {
      phi::ScaleKernel<phi::dtype::bfloat16>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
108 109
      break;
    }
110 111 112
    case phi::DataType::INT64: {
      phi::ScaleKernel<int64_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
113 114
      break;
    }
115 116 117
    case phi::DataType::INT32: {
      phi::ScaleKernel<int32_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
118 119
      break;
    }
120 121 122
    case phi::DataType::INT16: {
      phi::ScaleKernel<int16_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
123 124
      break;
    }
125 126 127
    case phi::DataType::INT8: {
      phi::ScaleKernel<int8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
128 129
      break;
    }
130 131 132
    case phi::DataType::UINT8: {
      phi::ScaleKernel<uint8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
133 134 135 136 137 138 139 140 141 142 143 144 145
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported data type."
          "Only Float64, Float32, BFloat16, Int64, Int32, Int16, Int8, UInt8 "
          "are supported for now."));
      break;
    }
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
146
static void ScaleGPU(DataType kernel_dtype,
147 148
                     const phi::GPUContext& dev_ctx,
                     const phi::DenseTensor& x,
149 150 151
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
152
                     phi::DenseTensor* dense_out) {
153
  switch (kernel_dtype) {
154 155 156
    case phi::DataType::FLOAT64: {
      phi::ScaleKernel<double>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
157 158
      break;
    }
159 160 161
    case phi::DataType::FLOAT32: {
      phi::ScaleKernel<float>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
162 163
      break;
    }
164 165 166
    case phi::DataType::FLOAT16: {
      phi::ScaleKernel<phi::dtype::float16>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
167 168
      break;
    }
169 170 171
    case phi::DataType::INT64: {
      phi::ScaleKernel<int64_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
172 173
      break;
    }
174 175 176
    case phi::DataType::INT32: {
      phi::ScaleKernel<int32_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
177 178
      break;
    }
179 180 181
    case phi::DataType::INT16: {
      phi::ScaleKernel<int16_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
182 183
      break;
    }
184 185 186
    case phi::DataType::INT8: {
      phi::ScaleKernel<int8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
187 188
      break;
    }
189 190 191
    case phi::DataType::UINT8: {
      phi::ScaleKernel<uint8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported data type."
          "Only Float64, Float32, Float16, Int64, Int32, Int16, Int8, UInt8 "
          "are "
          "supported for now."));
      break;
    }
  }
}
#endif

Tensor scale_switch_case(const Tensor& x,
                         const Scalar& scale,
                         float bias,
                         bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
229
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
230 231 232 233 234 235 236
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

237
  auto dense_x = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
238

239 240 241 242 243 244
  auto dense_out = std::make_shared<phi::DenseTensor>(
      phi::make_intrusive<paddle::experimental::SharedStorage>(
          phi::TransToPtenPlace(kernel_backend)),
      phi::DenseTensorMeta());
  phi::MetaTensor meta_out(dense_out.get());
  phi::UnchangedInferMeta(*dense_x, &meta_out);
245 246 247 248 249 250 251

  Tensor out;
  out.set_impl(dense_out);

  switch (kernel_backend) {
    case Backend::CPU:
      ScaleCPU(kernel_data_type,
252
               static_cast<const phi::CPUContext&>(*dev_ctx),
253 254 255 256 257 258 259
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
      break;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
260 261
    case Backend::GPU:
      ScaleGPU(kernel_data_type,
262
               static_cast<const phi::GPUContext&>(*dev_ctx),
263 264 265 266 267
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
      break;
#endif
    default:
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported backend."
          "Only CPU and CUDA Backend are supported for now."
          "Please double check if your backend falls into the above two "
          "categories."));
  }

  return out;
}

}  // namespace experimental
}  // namespace paddle