unsqueeze_op.cc 13.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22 23

namespace paddle {
namespace operators {

24
class UnsqueezeOp : public framework::OperatorWithKernel {
25
 public:
26 27 28 29 30 31 32
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Unsqueeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Unsqueeze operator should not be null.");
33

34 35
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Validity Check: input tensor dims (<6).
37 38 39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimensions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
      PADDLE_ENFORCE_EQ(
          axes_dims.size(), 1,
          "Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. "
          "But received AxesTensor's shape = [%s], "
          "AxesTensor's dimension = %d.",
          axes_dims, axes_dims.size());
      PADDLE_ENFORCE_GE(axes_dims[0], 0,
                        "Input(AxesTensor)'s shape must be known. But received "
                        "AxesTensor's shape = [%s]",
                        axes_dims);
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
72
    }
73 74
  }

75
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
76
                                        const framework::DDim &in_dims) {
77 78
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
79 80 81
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
82 83
    PADDLE_ENFORCE_LE(output_size, 6,
                      "The output tensor's rank should be less than 6.");
84 85

    for (int axis : unsqz_dims) {
86
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
87
      // Vaildity Check: the axis bound
88 89
      PADDLE_ENFORCE_GE(cur, 0);
      PADDLE_ENFORCE_LE(cur, cur_output_size);
90 91 92 93 94 95 96 97 98
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
99
      // Add the output size.
100
      cur_output_size++;
101 102
    }

103
    // Make output shape
104 105
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
106 107 108 109 110 111
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
129 130 131 132 133 134
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
135 136 137 138 139 140 141 142 143 144 145
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
146 147
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
148
                              "(std::vector<int>). List of integers,"
149
                              " indicating the dimensions to be inserted")
150
        .SetDefault({})
151 152
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
153 154 155
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
                            "Invalid dimensions, dynamic dimensions should be "
                            "within [1, 6] dimensions (Eigen limit).");
T
tianshuo78520a 已提交
156
          // Validity Check: the range of unsqueeze axis.
157
          for (int axis : axes) {
158 159 160
            PADDLE_ENFORCE_LT(axis, 6,
                              "Invalid dimensions, input axis should be"
                              " within [1, 6] dimensions (Eigen limit).");
161 162
          }
        });
163
    AddComment(R"DOC(
164 165
    Unsqueeze Operator.

166 167 168 169 170 171
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
172
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
173 174 175 176
    )DOC");
  }
};

177
class UnsqueezeGradOp : public framework::OperatorWithKernel {
178
 public:
179 180 181
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
182
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
183
    ctx->ShareLoD("X", framework::GradVarName("X"));
184
  }
185 186 187 188 189 190 191 192 193 194 195 196 197 198

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

199
  void Apply(GradOpPtr<T> grad_op) const override {
200 201 202 203 204 205
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
206
};
207

208 209 210 211 212
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
213
class Unsqueeze2Op : public UnsqueezeOp {
214
 public:
215
  using UnsqueezeOp::UnsqueezeOp;
216
  void InferShape(framework::InferShapeContext *ctx) const override {
217
    UnsqueezeOp::InferShape(ctx);
218
    const auto &x_dims = ctx->GetInputDim("X");
219 220 221 222

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
        "Output(XShape) of Unsqueeze operator should not be null.");
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
244 245
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
246
 public:
H
hong 已提交
247
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
248

249
  void Apply(GradOpPtr<T> grad_op) const override {
250
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
251 252 253 254
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
255 256 257
  }
};

258
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
259
 public:
260 261 262 263 264 265
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
266 267 268 269 270 271
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

272 273 274
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
275 276 277
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
278 279
  }
};
280 281 282 283 284

DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
285 286
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(UnsqueezeGradOpNoNeedBufferVarInference,
                                      "X");
287 288 289 290
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
291 292 293 294 295
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
                  ops::UnsqueezeGradOpNoNeedBufferVarInference);
296 297

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
298 299 300
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
301
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
302
                  ops::UnsqueezeGradInplaceInferer);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
318 319 320 321 322
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
323 324 325 326 327 328 329
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);