svd_helper.h 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17
#include <Eigen/src/Core/util/Constants.h>
18

19 20 21
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
22

23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
25 26 27
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
28 29
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
30 31 32
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
33
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
34
#include "paddle/phi/kernels/funcs/math_function.h"
35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;
43 44 45
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
46 47

template <typename T>
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void LapackSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
               int full = false) {
  char jobz = full ? 'A' : 'S';
  int mx = std::max(rows, cols);
  int mn = std::min(rows, cols);
  T* a = const_cast<T*>(X);
  int lda = rows;
  int ldu = rows;
  int ldvt = full ? cols : mn;
  int lwork = full ? (4 * mn * mn + 6 * mn + mx) : (4 * mn * mn + 7 * mn);
  std::vector<T> work(lwork);
  std::vector<int> iwork(8 * mn);
  int info;
  phi::funcs::lapackSvd<T>(jobz, rows, cols, a, lda, S, U, ldu, VH, ldvt,
                           work.data(), lwork, iwork.data(), &info);
  if (info < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "This %s-th argument has an illegal value", info));
  }
  if (info > 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "DBDSDC/SBDSDC did not converge, updating process failed. May be you "
        "passes a invalid matrix."));
71 72 73 74 75 76
  }
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
              int full = false) {
77
  // NOTE: this function is row major, because this function called the lapack.
78 79 80 81 82
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
83 84
    LapackSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
                 rows, cols, full);
85 86 87 88 89 90
  }
  return;
}

template <typename T>
struct PowFunctor {
91
  PowFunctor(const T* input, T* output, int64_t numel, T exp)
92 93 94 95 96 97 98 99
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
100
  T exp_;
101 102
};

L
Lijunhui 已提交
103 104 105 106 107 108
template <typename T>
struct RealMulComplexFunctor {
  // x: complex number (a+bj)
  // y: complex number (c+0j) pretend to be a real number
  // out: complex number (ac+bcj)
  inline HOSTDEVICE T operator()(T x, T y) {
109 110 111 112 113
    PADDLE_ENFORCE_LT(
        y.imag, 1e-6,
        platform::errors::InvalidArgument("The image part of y must to be 0"
                                          "but got [%d]",
                                          y.imag));
114
    return platform::complex<phi::dtype::Real<T>>(x.real * y.real,
115
                                                  x.imag * y.real);
L
Lijunhui 已提交
116 117 118
  }
};

119
static std::vector<int> GetBroadcastShape(InTensors ins) {
120 121 122 123 124
  PADDLE_ENFORCE_EQ(
      ins.size(), 2,
      platform::errors::InvalidArgument("GetBroadcastShape Receive 2 tensors"
                                        "but got [%d]",
                                        ins.size()));
125 126 127
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
128 129
      (x_dim.size() > y_dim.size() ? phi::vectorize<int>(x_dim)
                                   : phi::vectorize<int>(y_dim));
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
        x_dim, y_dim));
  }
  return broadcast_shape;
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static inline framework::DDim ComputeAndCheckShapeForConcatOp(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
    const size_t axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(), out_dims.size(),
                      platform::errors::InvalidArgument(
                          "The shape of input[0] and input[%d] "
                          "is expected to be equal."
                          "But received input[0]'s shape = "
                          "[%s], input[%d]'s shape = [%s].",
                          i, inputs_dims[0], i, inputs_dims[i]));
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
          PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j],
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
                                j, i, inputs_dims[0], i, inputs_dims[i]));
        }
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
      }
    }
  }
  return out_dims;
}

static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) {
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

// Prepared for the broadcast operation
static std::vector<int64_t> get_broadcast_batch_portion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
        (x_size == y_size || x_size == 1 || y_size == 1), true,
        platform::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
            x_size, y_size, i));

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

243 244 245 246 247
#define DITO_TRANSPOSE_RANK_CASE(N)                   \
  case N: {                                           \
    phi::funcs::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);                    \
    break;                                            \
248 249 250 251 252 253 254 255
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
template <typename T, typename ValueType>
struct DiagAndFillFunctor {
  DiagAndFillFunctor(const int m, const int n, const int num_lower_diags,
                     const int num_upper_diags, const ValueType* scale,
                     const T* input, T* output)
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        scale_(scale),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = input_[index];
    } else if (col == band_end - 1) {
      output_[index] = static_cast<T>(scale_[index % m_]);
    } else {
      output_[index] = input_[index];
    }
  }

 private:
  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const ValueType* scale_;
  const T* input_;
  T* output_;
};

template <typename DeviceContext, typename T, typename ValueType = T>
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

307
  framework::Tensor Pow(const framework::Tensor& x, T exp) {
308 309 310 311 312 313 314 315 316 317 318
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
    PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
                          numel, exp);
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
                           const framework::Tensor& mat_b, bool trans_a = false,
                           bool trans_b = false) {
319
    framework::Tensor ret;
320 321
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
322
    std::vector<int> x_vec = phi::vectorize<int>(a_dim);
323 324
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
325
    ret.Resize(phi::make_ddim(x_vec));
326 327
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
328 329
    auto mat_a_discrib = phi::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = phi::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b);
330 331 332
    blas.MatMul(mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret,
                T(0.0));
    return ret;
333
  }
334

335
  framework::Tensor Transpose(const framework::Tensor& x) {
336 337
    // transpose the last two dimision
    framework::Tensor ret;
338
    auto x_dim = x.dims();
339
    auto x_vec = phi::vectorize<int>(x_dim);
340 341 342 343 344 345 346 347
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
348
    auto& dev_ctx = context.template device_context<DeviceContext>();
349
    ret.Resize(phi::make_ddim(x_vec));
350 351 352 353 354 355 356 357 358 359 360 361 362 363
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
364 365
  }
  framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
366
                         // FIXME  link error
367
                         int padding_value = 0) {
368 369 370 371 372 373 374 375 376
    PADDLE_ENFORCE_EQ(padding_value, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
    PADDLE_ENFORCE_EQ(offset, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

    framework::Tensor ret;
377 378 379
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
380 381 382 383
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
384 385 386 387 388 389 390
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
391 392 393 394 395 396
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
L
Lijunhui 已提交
397 398 399 400

  // batch_diag for CPU only
  Tensor BatchDiag(const Tensor& x, int batch) {
    Tensor out;
401
    auto* x_data = x.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
402
    auto numel = x.numel();
403
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
L
Lijunhui 已提交
404
        x.dims(), context.GetPlace(),
405
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
406 407 408 409 410 411 412 413

    auto x_dims = x.dims();
    int num_dims = x_dims.size();
    std::vector<int> out_shape;

    for (int i = 0; i < num_dims - 1; ++i) {
      out_shape.push_back(x.dims()[i]);
    }
414
    out.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    int order = x.dims()[num_dims - 1];
    int stride_out = order * order;
    int stride_in = order + 1;
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < order; ++j) {
        out_data[i * order + j] = x_data[stride_out * i + stride_in * j];
      }
    }
    return out;
  }

  // a complex number x times a real number y, which is represented as (a+0j)
  Tensor RealMulComplex(const Tensor& x, const Tensor& y) {
    framework::Tensor ret;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
430
    ret.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
431 432 433 434 435
    ElementwiseComputeEx<RealMulComplexFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, RealMulComplexFunctor<T>(), &ret);
    return ret;
  }

436 437 438
  framework::Tensor Div(const framework::Tensor& x,
                        const framework::Tensor& y) {
    framework::Tensor ret;
439 440 441 442 443 444 445 446 447 448
    if (x.type() != y.type()) {
      ret.mutable_data<T>(x.dims(), context.GetPlace());
      auto x_vector = EigenVector<T>::Flatten(x);
      auto y_vector = EigenVector<ValueType>::Flatten(y);
      auto out_vector = EigenVector<T>::Flatten(ret);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      out_vector.device(place) = x_vector / y_vector;
    } else {
      std::vector<int> out_shape = GetBroadcastShape({&x, &y});
449
      ret.Resize(phi::make_ddim(out_shape));
450 451 452
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, DivFunctor<T>(), &ret);
    }
453
    return ret;
454 455 456
  }
  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
457 458
    // element wise add, support numpy broadcast.
    framework::Tensor ret;
459
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
460
    ret.Resize(phi::make_ddim(out_shape));
461 462 463
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
464 465 466
  }
  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
467
    framework::Tensor ret;
468
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
469
    ret.Resize(phi::make_ddim(out_shape));
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

  framework::Tensor ReduceSum(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

  framework::Tensor ReduceMax(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
489
  }
490 491
  // Support float and complex type subtraction,the default is T type
  template <typename InT = T>
492 493
  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
494
    framework::Tensor ret;
495
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
496
    ret.Resize(phi::make_ddim(out_shape));
497 498 499 500
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
501 502
      ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
          context, &x, &y, -1, SubFunctor<InT>(), &ret);
503
#endif
504
    } else {
505
      if (x.dims().size() >= y.dims().size()) {
506 507
        ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, SubFunctor<InT>(), &ret);
508
      } else {
509 510 511 512
        // This is copyed from elementwise_sub, which means we
        // need reverse will xrank < yrank
        ElementwiseComputeEx<InverseSubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, InverseSubFunctor<InT>(), &ret);
513
      }
514 515
    }
    return ret;
516 517 518 519 520
  }
  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
521
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
522 523 524 525 526 527 528
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
529
    out.Resize(phi::make_ddim(out_shape));
530 531
    return out;
  }
532 533
  framework::Tensor Fill(std::vector<int> shape, float fill_value) {
    framework::Tensor ret;
534
    ret.Resize(phi::make_ddim(shape));
535 536
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
537
    phi::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
538
    return ret;
539
  }
540 541 542
  framework::Tensor Infinits(std::vector<int> shape) {
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
543
  }
544 545
  framework::Tensor Eye(int n) {
    auto output = Fill({n}, 1);
546 547 548 549 550
    auto ret = Diag(output);
    return ret;
  }
  framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
                          std::vector<int> starts, std::vector<int> ends) {
551
    framework::Tensor ret;
552
    std::vector<int> new_axes = axes;
553
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
554
    size_t rank = out_shape.size();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    PADDLE_ENFORCE_EQ(
        axes.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
        ends.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
      PADDLE_ENFORCE_GT(ed, st,
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
572 573 574 575 576 577 578 579 580
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
581
    ret.Resize(phi::make_ddim(out_shape));
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
597 598
  }

599 600 601 602 603 604 605
  framework::Tensor TrilTriu(const framework::Tensor& x, int diagonal,
                             bool lower) {
    framework::AttributeMap attrs;
    attrs["diagonal"] = diagonal;
    attrs["lower"] = lower;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
606 607 608
    PADDLE_ENFORCE_GE(
        x_rank, 2,
        platform::errors::InvalidArgument("Rank must be at least 2."));
609
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
610 611 612
    return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape);
  }

613 614 615 616 617 618 619 620 621 622 623
  framework::Tensor TriangularSolve(const framework::Tensor& x,
                                    const framework::Tensor& y, bool upper,
                                    bool transpose, bool unitriangular) {
    framework::AttributeMap attrs;
    attrs["upper"] = upper;
    attrs["transpose"] = transpose;
    attrs["unitriangular"] = unitriangular;
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    auto y_dims_n = y_dims.size();
624 625
    std::vector<int64_t> x_dims_vec = phi::vectorize<int64_t>(x_dims);
    std::vector<int64_t> y_dims_vec = phi::vectorize<int64_t>(y_dims);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);
    std::vector<int64_t> expand_batch_portion =
        get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut);
    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
    y_broadcast_dims.insert(y_broadcast_dims.end(), {y_dims_vec[y_dims_n - 2],
                                                     y_dims_vec[y_dims_n - 1]});
    std::vector<int> out_shape(y_broadcast_dims.begin(),
                               y_broadcast_dims.end());
    return CreateOpRunAndReturnTensor("triangular_solve", inputs, attrs,
                                      out_shape);
  }

  framework::Tensor ConcatTwoTensors(const framework::Tensor& x,
                                     const framework::Tensor& y, int axis) {
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    std::vector<framework::DDim> inputs_dims({x.dims(), y.dims()});
    NameInTensorMap inputs({{"X", {&x, &y}}});
    size_t axis_ =
        ComputeAxisForConcatOp(static_cast<int64_t>(axis),
                               static_cast<int64_t>(inputs_dims[0].size()));
    framework::DDim out_dims =
        ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_);
    if (out_dims[axis_] < 0) {
      out_dims[axis_] = -1;
    }
655
    std::vector<int> out_shape = phi::vectorize<int>(out_dims);
656 657 658
    return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape);
  }

659 660 661 662 663
  Tensor Conj(const Tensor& x) {
    Tensor out;
    auto* out_data = out.mutable_data<T>(x.dims(), context.GetPlace());
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(x.numel());
664
    phi::funcs::ConjFunctor<T> functor(x_data, x.numel(), out_data);
665 666 667 668
    for_range(functor);
    return out;
  }

L
Lijunhui 已提交
669 670 671
  Tensor Real(const Tensor& x) {
    Tensor out;
    auto numel = x.numel();
672
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
L
Lijunhui 已提交
673
        x.dims(), context.GetPlace(),
674
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
675 676
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(numel);
677
    phi::funcs::RealFunctor<T> functor(x_data, out_data, numel);
L
Lijunhui 已提交
678 679 680 681
    for_range(functor);
    return out;
  }

682 683 684 685 686 687 688 689 690 691 692 693 694
  Tensor DiagFill(const int m, const int n, const int num_lower_diags,
                  const int num_upper_diags, const Tensor& scale,
                  const Tensor& input) {
    Tensor out;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, input.numel());
    DiagAndFillFunctor<T, ValueType> diag_and_copy_functor(
        m, n, num_lower_diags, num_upper_diags, scale.data<ValueType>(),
        input.data<T>(), out.mutable_data<T>(input.dims(), input.place()));
    for_range(diag_and_copy_functor);
    return out;
  }

695 696
 private:
  const framework::ExecutionContext& context;
697 698
  phi::funcs::BlasT<DeviceContext, T> GetBlas() {
    return phi::funcs::GetBlas<DeviceContext, T>(context);
699 700 701 702 703
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  template <size_t D>
  void EigenSliceWrapper(const framework::Tensor* in,
                         const std::vector<int>& start,
                         const std::vector<int>& end, framework::Tensor* out) {
    // Slice by call Eigen Tensor Function `.slice()`
    size_t rank = in->dims().size();
    PADDLE_ENFORCE_EQ(start.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
    PADDLE_ENFORCE_EQ(end.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
  }
732 733 734 735 736 737 738 739 740 741 742 743 744 745
  framework::Tensor CreateOpRunAndReturnTensor(
      const std::string& type, const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs, std::vector<int> out_shape,
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
746 747
        phi::make_ddim(out_shape), context.GetPlace());
    // phi::make_ddim(out_shape)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
765

766 767 768 769 770
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
771
    out.Resize(phi::make_ddim(out_shape));
772 773 774 775 776 777 778
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle